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Introduction

» Today: start talking about time series/stochastic processes.
» Homework due on Thursday.

» Continue stochastic processes on Thursday.



Stochastic Processes

» Random variables
» Conditional distributions

» Markov processes



Preliminaries

» X is a random variable, x is its realization
» Support: smallest set S such that Pr(x € S) =1
» Cumulative distribution function: F (x) = Pr(X < x)

> Density function: f (x) = S F (x) implying that
f (x)dx = dF (x)



The Expected Value

> Mean is the expectation
X = E(X) :/ xdF (x) :/ xF (x) dx
» The expectation of a function of a random variable, g (X), is

EEO) = [ g(X)dF()

> Note that E (g (X)) # g (X) unless g (X) is linear, i.e.

g(X)=b-X



The Variance

» Variance

» Standard deviation



Jointly Distributed Random Variables

Random vector (X, Y)
Joint distribution function: F (x,y) =Pr(X <x,Y <y)
Covariance: C(X,Y)=E[(X—=X)- (Y =Y)]
C(X,Y)
V() V(Y]
Expectation of a linear combination

Cross-correlation =

vV v v VY

E(aX + bY) = aE(X)+ bE(Y)



What is a Stochastic Process?

» Stochastic process is an infinite sequence of random variables
o
{Xt}t:—oo
» j'th autocovariance = v; = C(X¢, X¢—j)

» Strict stationarity: distribution of (X, Xeijr, Xeq)o, - Xetj» )
does not depend on t

» Covariance stationarity: X; and C (X, X¢—j) do not depend
on t



Defining a Conditional Density

» Work with random vector x = (X, Y) ~ F(x,y).

» X and Y are random variables

» x and y are realizations of the random variables
> F(x,y) is joint cumulative distribution

» f(x,y) is joint density function



Conditional Variables and Independence

» Conditional probability
» when Pr(x € B) >0,

Pr(AN B)

Pr(x € Alx € B) =Pr(A|B) = Pr(B)

» Conditional distribution F(y|x) (handles Pr(B) = 0)
» Marginal distribution: Fx (x) = Pr(X < x)
> F(y|x)is Pr(Y <y) conditional on X < x



Defining a Conditional Density

» Independence: The random variables X and Y are
independent if

F(x,y) = Fx(x)Fy (y)
» If X and Y are independent, then

F(ylx)=Fy(y)
and
F(xly) = Fx(x)
» i.i.d means independent and identically distributed

» Conditional (mathematical, rational) expectation

me):/m de(y\x)z/oo yF (y]x) dy.

—00



Markov Property

» A particular conditional process is called a Markov chain.

» Markov Property: A stochastic process {x;} is said to have
the Markov property if for all k > 1 and all t,

PrOb(Xt+]_|Xt,Xt7]_, "'7Xt—k) = PrOb(Xt+]_‘Xt) (1)

» That is, the dependence between random events can be
summarized exclusively with the previous event.

» This allows us to characterize this process with a Markov
chain.

» Markov chains are a key way of characterizing stochastic
events in our models.



Markov Chains

» For a stochastic process with the Markov property, we can
characterize the process with a Markov chain.
> A time-invariant Markov chain is defined by the tuple:
1. an n-dimensional state space of vectors ¢;,i = 1,...., n,

» where €; is an n x 1 vector where
> the ith entry equals 1 and the vector contains Os otherwise.

2. a transiton matrix P (n x n), which records the conditional

probability of transitioning between states
3. a vector m (n x 1), that records the unconditional probability

of being in state i at time 0.
> The key object here is P. Elements of this matrix are given by

Pjj = Prob(xt+1 = ej|x = &) (2)

» In other words, if you're in state i, this is the probability you
enter state j.



Markov Chains

» Some assumptions on P and m:
» Fori=1,...,n, P satisfies

n

Y Pi=1 (3)

j=t

» 7 satisfies

> moi =1 (4)
i=1

» Where does this first property become useful?
» How would you calculate Prob(x;4> = €j|x; = €;)?
n

= Z Prob(xt42 = €j|xt+1 = en)Prob(xt4+1 = en|x: = €j)

h=1
(5)

=" PuPr = P (6)
h=1



Markov Chains

» This is also true in general:

Prob(x¢+k = €j|x: = ei) = pLk) (7)

y

» Why is this useful? We can use mg with this transition matrix
to characterize the probability distribution over time:

™ = moP (8)
Th = 7T6P2 9)
(10)

» Thus, by knowing the initial distribution and the transition
matrix, P, we know the distribution at time t



Stationary Distributions

» Where does this trend to over time?
» We know that the transition of the distribution takes the form

Ty = mP.
» This distribution is stationary if

Te4+1 = T¢ (11)

» (we will relax this to t large enough momentarily)

» This means that for a stationary distribution, 7, P satisfy

' =7'Por (12)
(I—P)r=0 (13)

> Anyone recognize this?



Stationary Distributions

7’ =7'Por (14)
(I-PYr=0 (15)

» It is useful to note (and will be useful when we think of
linearized solution techniques), that
» 7 is the (normalized) eigenvector of the stochastic matrix P.
» In this case, the eigenvalue (root) is 1.
> A lot of linearizing dynamic systems is about
» finding eigenvectors with corresponding eigenvalues of less
than 1 (non-explosive).

» solving for initial conditions that are orthogonal to the
explosive eigenvectors (i.e., the system does not explode).



Asymptotically Stationary Distributions

» What about when mg=m;? Can it still have a notion of
stationarity?

> Yes. Asymptotic stationarity.
> Asymptotic stationarity:

t|l>moo T = Too (16)

where /= 7/ _P
Next, is this ending point unique?
Does 74, depend on mg?

If not, ms is an invariant or stationary distribution of P.

vVvYyyvyy

This will be very useful when we talk about heterogeneous
agents.



Some Examples

> Let's pick a simple initial condition: 7y = [1 0 0].
» And a matrix

09 01 0
P=102 06 0.2 (17)
01 02 07

» Now use Matlab to iterate.



Preliminaries

= plMat = MMat'*piMat
piMat =
0.2000

0.1000
o]

Figure: First iteration

»> plMat = MMat”(100) '*piMat
piMat =
0.56154

0.2308
9.1538

Figure: First iteration

== pilMat = MMat'*piMat
piMat =

0.8300
0.1500
0.0200

Figure: 2nd iteration

== piMat = MMat~(1000) ' *piMat
piMat =
0.6154

0.2308
0.1538

Figure: Grid of k values

» This distribution (P) is asymptotically stationary!

» Unique? Try mp = [00 1]



Preliminaries

>= plMat = MMat'*piMat
piMat =
0.9000

0.1000
o]

Figure: First iteration

»> plMat = MMat”(100) '*piMat
piMat =
0.56154

0.2308
0.1538

Figure: First iteration

=» plMat = MMat'*piMat
piMat =

0.8300
0.1500
0.0200

Figure: 2nd iteration

== piMat = MMat” (1000} ' *piMat
piMat =
0.6154

0.2308
0.1538

Figure: Grid of k values

» This distribution (P) is (probably) a unique invariant

distribution.

> How would we prove this?



Ergodicity

» We would like to be able to replace conditional expectations
with unconditional expectations.
> i.e., not indexed by time or initial conditions.
» Some preliminaries:
» Invariant function: “a random variable y; = ¥'x; is said to be
invariant if y; = yp, t > 0, for all realizations of x;, t > 0 that
occur with positive probability under (P, 7).
> i.e., the state x can move around, but the outcome y; stays
constant at yp.



Ergodicity

» Ergodicity:

» “Let (P, 7) be a stationary Markov chain. The chain is said to
be ergodic if the only invariant functions y are constant with
probability 1 under the stationary unconditional probability
distribution 7."

» In other words, for any initial distribution, the only functions
that satisfy the definition of an invariant function are the
same.



Next Time

» More stochastic processes.

» Homework due Thursday.
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