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Introduction

I Today: study a variety of stochastic processes that show up in
macroeconomics.

I Then, discuss detrending data.



Stochastic Processes

I Conditional expectations and linear projections
I White noise
I AR(1)
I MA(1)
I ARMA(p,q)
I Detrending data



What is a Stochastic Process?

I Stochastic process is an infinite sequence of random variables
{Xt}∞t=−∞

I j’th autocovariance = γj = C (Xt ,Xt−j)

I Strict stationarity: distribution of (Xt ,Xt+j1 ,Xt+j2 , ...Xt+jn , )
does not depend on t

I Covariance stationarity: X̄t and C (Xt ,Xt−j) do not depend
on t



White noise

{εt}∞t=−∞

I E (εt) = 0, ∀t
I V (εt) = σ2

ε , ∀t
I C (εt , εt−j) = 0, ∀t, j 6= 0



First-order autoregressive (AR(1)) process

xt = α+ φxt−1 + εt

I εt is white noise and |φ| < 1 as required by stationarity
I By recursive substitution under stationarity

xt = α+ εt + φ [α+ φxt−2 + εt−1]

=
α

1 − φ
+

∞∑
j=0

φjεt−j .

I E (xt) = α/ (1 − φ)



Moments

I Facts

V (aX + bY ) = a2V (X) + b2V (Y ) + 2abC (X ,Y )

C (aX + bY , cX + dY ) = acV (X)+bdV (Y )+(ad + bc)C (X ,Y )

I Since the value of xt can be expressed as

xt =
α

1 − φ
+

∞∑
j=0

φjεt−j ,

I The variance of xt is

V (xt) =
∞∑

j=0

(
φj)2

σ2
ε =

σ2
ε

1 − φ2 .



Covariances

I Covariance

C (xt , xt−1) = C (α+ φxt−1 + εt , xt−1)

= 0 + φV (X) + 0 = φ
σ2
ε

1 − φ2 ,

C (xt , xt−k) = C

φkxt−k +
k−1∑
j=0

φjεt−j , xt−k


= φk σ2

ε

1 − φ2 = φkV (xt) .

I Expectation: If {εt} is i.i.d. and α = 0, E (xt | xt−k) = φkxt−k



AR(p)

I Autoregressive function of p lagged x ′s

xt = α+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p + εt

I Defining xt−j = Ljxt , we can rewrite an AR(p) process as(
1 − φ1L − φ2L2 − ...− φpLp) xt = α+ εt

I Stationarity condition: The roots of

1 − φ1z − φ2z2 − ...− φpzp = 0

lie outside the unit circle (|z| > 1 when real)



AR(p)

I For AR(1), φ < 1 yields stationarity
I If stationarity holds, we can rewrite xt as a function of

infinitely lagged ε′s



First-order moving average (MA(1)) process

xt = α+ εt + θεt−1

I εt is white noise
I E (xt) = α

I V (xt) =
(
1 + θ2)σ2

ε

I C (xt , xt−1) = C (εt + θεt−1, εt−1 + θεt−2) = θσ2
ε

I C (xt , xt−k) = C (εt + θεt−1, εt−k + θεt−k−1) = 0, k > 1



MA cont’d

I Rewrite with lag operator as

xt − α = (1 + θL)εt

I When the root of
1 + θz = 0

lie outside unit circle (when |θ| < 1) xt is said to be invertible

εt =
(xt − α)

(1 + θL)

=
−α

1 + θ
+

∞∑
j=0

(−θ)j xt−j ,

I Express residual as infinite recursion of lagged x ′s



MA(q)

I xt is a function of q lagged residuals

xt = α+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

I Rewriting with lag operator yields(
1 + θ1L + θ2L2 + ...+ θqLq) εt = xt − α

I Invertibility condition is that the roots of

1 + θ1L + θ2L2 + ...+ θqLq = 0

lie outside the unit circle (|z| > 1 when real)
I If the invertibility condition holds, we can write the εt as an

infinite function of lagged x ′s



ARMA process

xt = α+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p

+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q.

I Stationarity condition
I Depends entirely on autoregressive coefficients
I The roots of

1 − φ1z − φ2z2 − ...− φpzp = 0,

must lie outside the unit circle (| · | > 1 when real)



EX

I Example: For AR(1)

1 − φ1z = 0

implying
z =

1
φ1

need
|z| = |φ−1

1 | > 1 requiring |φ1| < 1



Invertibility Condition

I The roots of

1 − θ1z − θ2z2 − ...− θpzp = 0,

must lie on or outside the unit circle (| · | > 1 when real)
I Example: For MA(1)

1 − θ1z = 0

implying
z =

1
θ1

need
|z| = |θ−1

1 | ≥ 1 requiring |θ1| ≤ 1,

where unity is included as a limit



Stationarity and invertibility

I Stationarity and invertibility imply
I if εt is i.i.d., then εt is the innovation to xt

εt = xt − E (xt | xt−1, xt−2, ....) .

I knowledge of the entire sequences {εt−j}∞j=0 and {xt−j}∞j=0 is
equivalent



Detrending

I Most of our (business cycle) models have nothing to say
about trends in the data.

I i.e., these models generally don’t explain growth.
I Need to detrend to get an appropriate data series.
I Yt = Xt + zt

I Xt is stationary
I zt is a trend

I Trend stationary
I zt is deterministic
I example: zt = αt



Difference Stationary

I Difference stationary
I zt is a random walk with {εt} a white noise process

zt = z0 +
t∑

j=1
εt−j

zt−1 = z0 +
t−1∑
j=1

εt−j

zt − zt−1 = εt



Three approaches

I Linear detrending: Regress data on time and take residuals
I Use Hodrick-Prescott filter to separate data into a trend

component and residuals and take residuals
I First difference the data



HP Filter
I Most common approach: HP Filter.
I Idea: isolate low-frequency trends from high frequency cycles.
I Let {yt}∞t=1 be a given series, where yt = xt + zt as before.
I xt is the trend component, zt is cyclical.
I Let λ be a parameter to be specified later, and consider the

problem

min
x1,x2,...,xT

T∑
t=1

(yt − xt)
2 + λ

T−1∑
t=2

[(xt+1 − xt)− (xt − xt−1)]
2

(1)

I What is going on here?
I We are minimizing the cyclical component (first part), by

moving the trend closer to the data.
I But we are getting penalized (λ) for making the trend too

closely reflect the data.



Next Time

I Discuss expectations in linear difference equations.
I Please turn your homework in by this evening.
I See my webpage for new homework (may not be up by class).
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