Macro II

Professor Griffy

UAlbany

Spring 2022

Introduction

- ► So far: building tools to think about dynamic models.
- ► Now (and mostly rest of class):
 - Build on those tools to make more applicable to economics.
 - Use those tools to model the macroeconomy
- ▶ Today:
 - Introduce dynamic programming
- Homework due Thursday.

Dynamic Programming

- Basic idea:
 - ▶ We can express macro models in a sequential form.
 - If we can write them recursively, we get access to more tools to solve them.
- We will start with a generic representation, give some important theorems, then discuss its use.

Sequential Problem

 We can broadly state most macro (and economics problems in general) as

$$\sup_{\{x_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t r(x_t, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_t), \ t = 0, 1, 2, ...$
 $x_0 \in X$ given

A solution tells us x_t at any time t.

Recursive Problem

▶ We want to write the sequential problem recursively

$$v(x) = \sup_{y \in \Gamma(x)} [r(x, y) + \beta v(y)], \forall x \in X.$$

- We can also find solutions to this problem that solve the sequential problem.
- We can make statements about the existence and uniqueness of those solutions.
- These statements are often easier when expressed this way.

Some definitions

- Metric space: a set S together with a metric (distance function), $\rho: S \times S \Rightarrow R$, such that for all $x, y, z \in S$:
 - 1. $\rho(x,y) \ge 0$, equality iff x = y
 - 2. $\rho(x, y) = \rho(y, x)$
 - 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z)$
- ▶ Complete metric space: A metric space (S, ρ) is complete if every Cauchy sequence converge to an element in S.
- ► Cauchy sequence: a sequence $\{x_n\}|_{n=0}^{\infty}$ for which $\rho(x_n, x_m) < \epsilon$, any $\epsilon > 0$ for $n, m \ge N_{\epsilon}$
- i.e., a sequence that gets closer and closer together (think of a model converging to equilibrium).

Contraction Mapping

- ▶ If (S, ρ) is a complete metric space and $T : S \Rightarrow S$ is a contraction mapping with modulus β , then
 - 1. T has exactly one fixed point v in S, and
 - 2. for any $v_0 \in S$, $\rho(T^n v_0, v) \le \beta^n \rho(v_0, v)$, n = 0, 1, 2, ...

Blackwell's Sufficient Conditions

- Let $X \subseteq R^I$, and let B(X) be a space of bounded functions $f: X \Rightarrow R$, with the sup norm. Let $T: B(X) \Rightarrow B(X)$ be an operator satisfying
 - 1. (monotonicity) $f, g \in B(X)$ and f(x)g(x), for all $x \in X$, implies $(Tf)(x) \le (Tg)(x)$, for all $x \in X$;
 - 2. (discounting) there exists some $\beta \in (0,1)$ such that

$$[T(f+a)](x) \le (Tf)(x) + \beta a$$
, all $f \in B(X)$, $a \ge 0, x \in X$

Blackwell's Sufficient Applied

Simple problem:

$$(Tv)(k) = \max_{0 \le y \le f(k)} \{ U[f(k) - y] + \beta v(y) \}$$

- Monotonicity: $f, g \in B(X)$ and f(x)g(x), for all $x \in X$, implies $(Tf)(x) \le (Tg)(x)$, for all $x \in X$;
- define $g(x) \ge v(x)$, then

$$(Tg)(k) = \max_{0 \le y \le f(k)} \{ U[f(k) - y] + \beta g(y) \}$$

$$\ge \max_{0 \le y \le f(k)} \{ U[f(k) - y] + \beta v(y) \}$$

$$= (Tv)(k)$$

▶ To see, take difference. $g(y) \ge v(y) \rightarrow$ monotone.

Blackwell's Sufficient Applied

Simple problem:

$$(Tv)(k) = \max_{0 \le y \le f(k)} \{ U[f(k) - y] + \beta v(y) \}$$

lacktriangle (discounting) there exists some $eta\in(0,1)$ such that

$$[T(f+a)](x) \le (Tf)(x) + \beta a, \text{ all } f \in B(X), a \ge 0, x \in X$$

$$(Tv)(k+a) = \max_{0 \le y \le f(k)} \{ U[f(k) - y] + \beta[v(y) + a] \}$$

$$= \max_{0 \le y \le f(k)} \{ U[f(k) - y] + \beta v(y) + \beta a \}$$

$$= (Tv)(k) + \beta a$$

► Thus, contraction mapping. Existence and uniqueness.

Theorem of the Maximum

▶ Broadly stated, the problem we face is

$$(Tv)(x) = \sup_{y} [F(x, y) + \beta v(y)]$$

s.t. y feasible given x

- This is just a value function
- With a specified constraint.

Correspondences

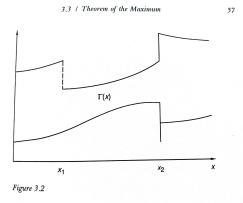
- We will define a correspondence $\Gamma(x)$ as
 - ▶ a set of feasible values of $y \in Y$ for $x \in X$,
 - where X can be thought of as the set of possible states
 - ▶ and *Y* the set of possible choices.
- ▶ The easiest example: the budget constraint.
- ► There are many feasible choices,
- we will pick on the maximizes the return function.
- Argmax correspondence:
 - We define a policy function G(x) as a correspondence, where
 - $G(x) = \{ y \in \Gamma(x) : f(x,y) = h(x) \}$

Compact Sets

- A compact set is a set that
 - 1. is closed: contains all of its limit points.
 - 2. is bounded: all points are within a finite distance of each other.
- Useful: most often applied to choice sets.
- Means that choices are finite and feasible.

Upper and Lower Hemi-Continuity

- ► Two notions of continuity, (really) loosely:
 - 1. Upper hemi-continuity: any choice y is in the set $\Gamma(x)$ (closed).
 - 2. Lower hemi-continuity: nearby x are in $\Gamma(x)$.



- ► Lower hemi-continuity: x₂ not lhc
- \triangleright Upper hemi-continuity: x_1 not uhc

Upper and Lower Hemi-Continuity

- Upper hemi-continuity is useful:
 - ▶ Upper hemi-continuity preserves compactness:
 - ▶ if $C \subseteq X$ is compact and Γ is uhc,
 - $ightharpoonup \Gamma(C)$ is compact.
- So if we place restrictions on X, our choice set is still in the correspondence.
- Allows our maximization problems to have solutions.
- If Γ is single-valued and uhc, it is continuous.

Theorem of the Maximum

- ▶ (conditions): Let $X \subseteq R^I$ and $Y \subseteq R^m$, let $f: X \times Y \Rightarrow R$ be a continuous function, and let $\Gamma: X \Rightarrow Y$ be a compact-valued and continuous correspondence.
- (implications): Then the function: $h: X \to R$ defined as $h(x) = \max_{y \in \Gamma(x)} f(x, y)$ and the correspondence $G: X \Rightarrow Y$ defined as $G(x) = \{y \in \Gamma(x) : f(x, y) = h(x)\}$ is
 - 1. nonempty,
 - 2. compact-valued, and
 - 3. upper hemi-continuous.
- Why is this useful?
 - under a few more assumptions (Γ is convex, f is strictly concave in y)
 - \triangleright we can obtain the maxmized value of f using the control g.
 - ightharpoonup and as a result, h(x).

Stochastic Dynamic Programming

Returning to our initial definition, let r be the return function and u the control vector with a state that evolves by $x_{t+1} = h(x_t, u_t, \varepsilon_{t+1})$. The sequential problem looks like

$$\begin{aligned} \max_{\{u_t\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t r(x_t, u_t) \\ \text{s.t.} \quad x_{t+1} &= h(x_t, u_t, \varepsilon_{t+1}) \ \forall t, \ x_0 \text{ given.} \end{aligned}$$

- where ε_t is some stochastic process ("shock") with a defined support and some distribution function $F(\varepsilon)$
- we usually take this to be independent and identically distributed or Markov.

The Equilibrium

What is the equilibrium in this environment? What are the equilibrium objects?

- A sequence $\{u_t\}_{t=0}^{\infty}$ for every possible sequence of realizations for ε 's
- ► This is not so bad insofar as, at any given point in time, the problem has an infinite horizon and looks the same
- The above can be unwieldy, so we can instead find a *policy* function that tells the agent, at any point in time, what they should do given some observed x_t considering what they expect the ε 's to be in the future

The Recursive Problem

Now let's translate this into a recursive problem.

$$V(x) = \max_{u} \left\{ r(x, u) + \beta \mathbb{E} \left[V\left(\underbrace{h(x, u, \varepsilon')}_{x'}\right) | x \right] \right\}$$

where
$$\mathbb{E}\Big[V\big(h(x,u,\varepsilon')\big)|x\Big] \equiv \int_{\varepsilon} V\big(h(x,u,\varepsilon')\big)dF(\varepsilon')$$

How do we solve this? The obvious way: FOCs:

$$\frac{dV(x)}{du} = 0: \qquad r_2(x, u) + \beta \frac{d}{du} \mathbb{E} \Big[V \big(h(x, u, \varepsilon') \big) | x \Big] = 0$$

What allows us to pass the derivative through the expectation?

Differentiation under Integration

If the limits of integration *do not* depend on the control *u*, we can directly apply **Leibniz's rule** for differentiation under the integral (i.e., you just do it).

$$r_2(x, u) + \beta \mathbb{E}\left[\frac{dV(h(x, u, \varepsilon'))}{dx'}h_2(x, u, \varepsilon')|x\right] = 0$$

Alas, another roadblock: we do not know what dV(x')/dx' is. Now we'll want to apply the Envelope Theorem. That is, we'll want to find dV(x)/dx.

Envelope Theorem

- ► The envelope theorem always seems to be a source of confusion.
- ▶ It states (loosely) that when we are maximizing a value function *V* with a choice *x*, we can proceed as though all other choices are at their optimal values.
- ▶ Why is this important? Because in principle, u affects the choice of u'.

$$r_{2}(x, u) + \beta \mathbb{E}\left[\frac{dV(h(x, u, \varepsilon'))}{dx'}h_{2}(x, u, \varepsilon')|x\right] = 0$$

$$r_{2}(x, u) + \beta \mathbb{E}[(r_{1}(x', u') + \beta \mathbb{E}\frac{\partial V}{\partial u'}h_{2}(x', u', \varepsilon''))\frac{\partial u'}{\partial x})h_{2}(x, u, \varepsilon')|x] = 0$$

$$+ (r_2(x',u') + \beta \mathbb{E} \frac{\partial V}{\partial u'} h_2(x',u',\epsilon'')) \frac{\partial u'}{\partial x} h_2(x,u,\epsilon') |x] = 0$$

- lacksquare We can cancel future terms because we optimally pick u'
- ightharpoonup i.e., we plug in g(x) for u.

 $r_2(x, u) + \beta \mathbb{E}[(r_1(x', u'))]$

Envelope Theorem II

If the problem we are working with can be written in such a way such that the transition does not depend on x, this can be greatly simplified to

$$\frac{dV(x)}{dx} = r_1(x, u) \qquad \Longrightarrow \qquad \frac{dV(x')}{dx'} = r_1(x', u').$$

Plugging this back into the FOC gives the stochastic EE.

$$r_2(x, u) + \beta \mathbb{E}\left[r_1(x', u')h_2(x, u, \varepsilon')|x\right] = 0$$

Now: return to neoclassical growth. Suppose that capital evolves according to $k'=(1-\delta)k+a+\varepsilon$ (where ε is iid), and that there is full depreciation $(\delta=1)$.

Stochastic Neoclassical Growth

$$V(k,\varepsilon) = \max_{c,k'} \left\{ ln(c) + \beta \mathbb{E} \left[V(k',\varepsilon') \right] \right\}$$
 s.t. $c = k^{\alpha} - k' + \varepsilon$

$$\implies V(k,\varepsilon) = \max_{k'} \left\{ ln(k^{\alpha} - k' + \varepsilon) + \beta \mathbb{E} \left[V(k',\varepsilon') \right] \right\}$$

The FOC is given by

$$\frac{1}{k^{\alpha} - k' + \varepsilon} = \beta \mathbb{E} \left[\frac{dV(k', \varepsilon')}{dk'} \right],$$

where we passed the derivative through the integral using Leibniz's rule.

Solving

Now for the Envelope Theorem.

$$\frac{dV(k,\varepsilon)}{dk} = \frac{\alpha k^{\alpha-1}}{k^{\alpha} - k' + \varepsilon} \qquad \Longrightarrow \qquad \frac{dV(k',\varepsilon')}{dk'} = \frac{\alpha k'^{\alpha-1}}{k'^{\alpha} - k'' + \varepsilon'}$$

Plugging this back into the FOC, we have the EE (which we can rewrite however we want).

$$\frac{1}{k^{\alpha} - k' + \varepsilon} = \beta \mathbb{E} \left[\frac{\alpha k'^{\alpha - 1}}{k'^{\alpha} - k'' + \varepsilon'} \right]$$
$$\frac{1}{c} = \beta \mathbb{E} \left[\frac{\alpha k'^{\alpha - 1}}{c'} \right]$$

Next Time

- ▶ Next: Permanent Income and Consumption Smoothing
- ► Homework due on Thursday.