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Introduction

» Today: reintroduce stochastic neoclassical growth model.
» Jumping off point for most modern macro models.
» Introduce solution techniques.

» Homework (really will be) on my website.



Model environment

» Every macro presentation should have an environment slide.
» This details the following:

1. preferences
2. technology
3. markets

» Then jump into individual problem.

> We will go through each of these.



Consumer’s Problem

P consumers in this economy maximize the expected value given
by

E

Zﬁtu(ct)]
t=0

» v is a bounded, continuous and strictly increasing utility
function.

» 3 € (0,1) is a discount factor.
> subject to
ye > ce+ [ keyr — (1 — )ke |
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Resource Constraints

Yt = ce+ it
kt+1 == (1 - (S)kt + it

» An agent owns an amount y; € Ry := [0, 00) of consumption
good at time t.

» Qutput can either be consumed or invested.

» When the good is invested, it is transformed one-for-one into
capital.



Technology

Vi1 = F(ver1, ker1) s Yegr ~ @

> f: Ri — Ry is the production function which is increasing
and continuous in k and .

» Production is stochastic, in that it depends on a shock ;11
realized at the end of the current period t.

» Calibration

iid.
Yer1 = €7 e~ N(0,1), 0 >0

f(kt+1a ’Yt+1) = ’7t+1k?+1
6=1



Optimization

max [E Btu(c
{ct, ker1}82, [;0 ( t)]

S.t. Y > Ct + key1 VE (Resource Constraint)

j.i.d.
yer1 = f(ker1,ve41), yep1 ~ @Vt (Technology)
ct > 0key1 >0VE (Non-negativity Constraint)

Yo = Yo given



Sequential Problem (SP)

max [E
{Ct}toio

ZBtU(Ct)]

=0
jid.
st yerr = F(ker1, Veg1), Yep1 < P VE
Ve > e+ kepaV t
Yo = Yo given

» Resource constraint holds with equality b/c v’ > 0.
P> vy, summarizes state of world at the start of each period.

P c; is chosen by the agent each period after observing the state.



Functional Equation (FE)

(SP) is an infinite-dimensional optimization problem. Instead, find
a time-invariant solution to functional equation:

v(y) = max {u(c)+/3 / V*<f(k’,7))¢(d7)}

ce[0,y]
y=c+ Kk
y'=f(K',7)

Solution v*, evaluated at y = yjg, gives the value of the maximum
in (SP).



Steady State

» Hard to characterize dynamics/solve model (find

c(t), k(t)¥ t)

Instead, characterize steady-state.

c=c =c* k=k = k*.

pick u(c) = In(c), f(k,v) = €7k and € ~ N(0,1),0 = 1.
then

vvyyypwy

L = El(ae k) ]

CI
P In steady state:

1 i ra—1y 1
= 5(04’7/( 1)*

c c*

» We will solve for the stochastic steady state.

> i.e., the steady-state if the aggregate shock were at its mean.



Steady State

» This leaves us with capital:
1= B(a’yk*a*l)

(W)a
K* = (Fap) s

» Now consumption from the budget constraint:
C* + k* — ’_}/k*a
C* — ’_}/k*a _ k*
_a _ _1
" =5(HaB) - — (YapB) e



Dynamics

» Dynamics:
¢ = Bk “Y)e
k' =5k* — ¢

» We have two dynamic variables: ¢ and k.
» The behavior of this system will depend on their dynamics.
> At steady-state:

C/
l=—= B(ayk* )
K c
1= — =7k« _ =
k! K

» If both hold, we are in steady-state, if not, dynamics can vary.



Dynamics

» Dynamics:
¢’ = Blayk* )
k' =5k — ¢
» Small c: second equation dictates that capital increases.

» Small k: first equation dictates that consumption increases.

> Reverse is true.



Phase Diagram
» Dynamics:
¢ = Blayk “ Y
k' =5k* - ¢

» From Eric Sim’'s notes:
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Solving for dynamics

P Recall contraction mapping
> If T is a contraction mapping with modulus [, then
1. there exists a unique fixed point v*, and

v i=Tv"

)= max {ute) 4.5 v (7)) oton) |
y=c+k
y' =f(k'.,)

2. for any vp and any n € N,
(T, v*) < B7p(vo, v*)

» Yields an is a policy function o*(y) = argmax{v(y)}

> We can apply this in two ways: analytically or
computationally.



Computation

How can we implement Bellman operator on our computer?

Tw(y) := Cg}gf;]{ )+ B8 / cb(dv)}

1. ApprOX|mat|on

2. Integration

3. Optimization

where w is a function that approximates v.



Approximation

P> Approximate an analytically intractable real-valued function f
with a computationally tractable function f

» given limited information about f.

» Divide the approximation domain of the function into finite
number of sub-intervals and approximate the original
function in each of the intervals.

» The points on the domain which separate the intervals are
called grid points.

» We use the value of the function at each grid point to
approximate the original function.

» Another way to think about it: sampling from domain of the
function at n nodes. As n — oo, f — f



Approximation Il

In order to figure out Bellman operator, we need to approximate an
analytically intractable real-valued function w.

Tw(y) = Cren[g?;]{ )+ 5/ ¢(dv)}

> Interpolation

1. Determine an approximation domain of w.

2. Pick n (often evenly spaced) nodes, produces n — 1 intervals.

3. Approximate the original function w in each of the resulting
intervals using a polynomial.

» Grid search
1. Determine an approximation domain of w.

2. Pick n nodes, produces n — 1 intervals.
3. Evaluate function at each node and pick maximum.



Integration

In order to figure out Bellman operator, we need to evaluate
continuation value.

Tw(y) := Cren[g;(/] { )+ 5/ d’Y)}

» One approach: Monte Carlo integration: Given a random
sample of size n, {7y},

*Z ( 7% gl —>/ o(v)dv

» Better approach: Gaussian Quadrature (for normally
distributed shocks and from related families)



Optimization

» Find the minimum of some real-valued function of several real
variables on a domain that has been specified.
» Derivative methods: Newton's method, etc.
» Derivative free: Golden section search, Grid search: pick
maximizing node.

» Finding the global minimum can be challenging.

» The function can have many local minima.
» Curse of dimensionality & curvature of problem (when
problems approach boundaries).



Conclusion

» Alternative: guess and verify (method of undetermined
coefficients).

> We will cover this next time.
> Midterm next Wednesday!

» Check website for homework (totally, | promise).
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