Instructor: Professor Griffy Due: May 5th, 2022 AECO 701

Problem Set 6: The Heterogeneous Agent Model

Problem 1. Huggett Model. On the campus cluster, you will find code to solve the Aiyagari model with a labor-leisure choice. Please start from that code (email me if you cannot access the cluster). The Huggett (1993) Model is given by

$$V(a,\epsilon;\psi) = u(c) + \beta E[V(a',\epsilon';\psi')]$$
(1)

subject to

$$c + a' \le (1 + r(\psi))a + \epsilon \tag{2}$$

$$\epsilon \sim Markov, \Pi(\epsilon'|\epsilon) \tag{3}$$

$$\psi' = \Psi(\psi) \tag{4}$$

Assume the following calibration:

Parameter	Value	
u(c)	$\frac{c^{1-\sigma}}{1-\sigma}$	
β	0.993	
σ	1.5	
a'	\geq -2	
a grid	[-2, 12]	
a nodes	100	

$$\pi_t = \begin{bmatrix} 0.925 & 0.075\\ 0.5 & 0.5 \end{bmatrix} \tag{5}$$

$$\epsilon = \begin{bmatrix} 1.0\\0.1 \end{bmatrix} \tag{6}$$

Note that market clearing is given by

$$\int_{a \times \epsilon} a' d\psi = 0 \tag{7}$$

- 1. Solve the model. Plot the decision rules for savings across the a grid for an agent in employment state 1 and employment state 2.
- 2. Plot the stationary distribution of wealth.

Problem 2. Aiyagari Model. Now we will extend the problem to include a firm, as in Aiyagari (1994). In this economy, the household's problem is given by

$$V(k, l; \psi) = u(c) + \beta E[V(k', l'; \psi')]$$
(8)

subject to

$$c + k' \le (1 + r(K, L) - \delta)k + w(K, L)l$$
(9)

$$k' \ge 0 \tag{10}$$

$$ln(l') = \rho ln(l) + \sigma (1 - \rho^2)^{\frac{1}{2}} \epsilon', \ \epsilon \sim N(0, 1)$$
(11)

$$\psi' = \Psi(\psi) \tag{12}$$

and the firm's problem is given by

$$\Pi = \max_{K,L} F(K,L) - r(K,L)K - w(K,L)L$$
(13)

Assume the following calibration:

Parameter	Value
u(c)	$\frac{\frac{c^{1-\mu}}{1-\mu}}{K^{\alpha}L^{1-\alpha}}$
F(K,L)	$K^{\alpha}L^{1-\alpha}$
β	0.96
δ	0.08
α	0.36
k Grid	[0, 18]
k nodes	100

Note that market clearing is given by

$$\int_{k \times l} l d\psi = L \tag{14}$$

$$\int_{k \times l} k' d\psi = K \tag{15}$$

and that μ , σ , and ρ will be given in the following parts.

- 1. Use Tauchen's method to approximate the AR(1) process for $\rho = 0.6$ and $\sigma = 0.2$. Write out the resulting grid and transition matrix.
- 2. Find the ergodic distribution of employment using this grid and transition matrix. Call this L. Note that you will need to calculate this for each ρ , σ pair.
- 3. Solve the model. Plot the decision rules for savings across the k grid for $\rho = 0.6$, $\sigma = 0.2$, and $\mu = 3$.
- 4. Plot the stationary distribution of wealth for $\rho = 0.6$, $\sigma = 0.2$, and $\mu = 3$.
- 5. Now pick $\sigma = 0.4$ and plot the net return to capital for $\rho = \{0, 0.3, 0.6, 0.9\}$ and $\mu = \{1, 3, 5\}$.