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Announcements

» Today: Start discussing solution techniques.
» Focus on linearization & its problems.

> New homework on my website.



Motivation
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Models are hard to solve globally.

Requires a lot of grid points, entails curse of dimensionality,
takes a long time.

A linearized system, by contrast, is easy to solve.
Need to pick a place to linearize around.
Pick the steady state.

Underlying assumption: economy will stay close to the
steady-state.



Empirical Motivation

» Standard RBC: all fluctuations of hours worked on the
intensive margin, i.e. average number of hours worked.

» Data: little fluctuation in average hours worked; lots of
fluctuation in whether or not people are working (extensive
margin).

» Standard RBC: missed badly on labor fluctuations (Frisch
Elasticity, i.e. response of labor to change in wage too low).

» Solution: Modify model to have extensive margin with high
Frisch Elasticity.

» Now: households pick the probability of working, but have to
work a set number of hours.

» This is a nonconvexity in that it forces individuals to work
either 0 or h hours.



Hansen (1985)

» Neoclassical growth model with labor-leisure lottery.

» A social planner maximize the following:

[e.e]

ECQY B [In(Cr) = vHi] (1)

t=0

» Subject to the following constraints:
Ye = AK{ (n*He)' ™ (2)

In(A) = (1 — p)In(A) + pIn(As—_1) + €;, € ~ N(0,52) (3)
> The goods market clears and capital evolves in a
predetermined fashion.

> Here, we assume that per capita labor productivity grows at
rate 7.



Equilibrium

» First step: detrend appropriate variables by per capita growth

to get stationarity: i.e. yr = Yi/n'.

» The system of equations that characterize the equilibrium are:

ye = ark{hi™?
In(a;) = (1 — p)In(A) + pln(at—1) + €
Ye=Ct+ it
nkt+1 = (]. — 5)kt + it
» Combine FOC|[c] and FOCIh]:
vcehy = (1 - G)Yt

» Euler Equation:

Ui 1 Yt+1
— = BE 0 +1-96
L = BEL—(O(7) +1- )]
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Solving for the Steady-State

In(a*) = (1 — p)In(A) + pln(a*)
= In(a*) = In(A) (10)
Euler Equation:

*

T = BEL(0C5) +1-0)

C*
n y*
=1 _pl 1q1_
154 Hk* 0
= k= ( f A (11)
ﬂ—1+6y



Solving for the Steady-State
» Use the previous to solve for investment
nk* = (1—-0)k*+i*

= (n—1+08)k* = i*

On—1+ 5))y*

= "=
m= A-1496

» FOC|c] and FOC[h]:
yc*h* = (1—0)y*

O(n—1+9)

*h*: _ *

= [l —(

(12)



Solving for the Steady-State

» Finally, solve for output.

y* — 3 k*Gh*l—G

. 0 10 0(n —1+6) 111
v = IO (i
y*170 — a*( 0 )0[(1 -0 ‘9(7]_ 1+5)

T-1+0" "~ =t g—1+5)]*1]1*6

e 4 oo 10 0(n—1+46)\ 1710
v = ) O Ol Y

(14)

» All variables now a function of parameters.



Steady-States
» In steady-state y; = yry1 = y*.

In(a*) = In(A) (15)
K = (Z_’;Mw* (16)

i = (W)y* (17)

¢~ - (Wny* (18)
W= (m)rl (19)
V= ) O - Y
(20)

» These steady-states will be used for calibration/solving.



Overview

» Broadly, two methods of solving models:
1. Local linear methods.
2. Global non-linear methods.
» Tradeoff: accuracy (global non-linear) for speed and simplicity
(local linear).

» My preference: global methods (linear methods involve
linearizing Euler Equation, distorting choices over risk).

P Here: Discuss log linearization and Blanchard and Kahn's
Method.



Local Linear Methods

P Log-linearize the system around the steady-state, then
proceed.
» First have to solve the system for stability:

1. Klein's Method (2000): Used for singular matrices.
2. Sim's Method (2001): Used when it is unclear which variables

are states and controls.
3. Blanchard and Kahn's Method (1980): First solution method
for rational expectations models.

» Here, we will use Blanchard and Kahn's Method.



Log-Linearizing the System

We first wish to rewrite X; = In(x;) — In(x) in two convenient ways:

)

Then, the first-order Taylor Approximation to this equation yields:

)?t = /n(ﬁ
X

- . 0
X & Xe(x) + 8—)):(x)(xt —X)

1
= X = /n(l) + ;(Xt — X)

We can also rewrite the equation for X; as

Xy = xe*t (21)



Log-Linearizing the System

From equilibrium conditions:

ye = ak{ by’ (22)
= In(y:) = In(a¢) + OIn(ke) + (1 — 0)In(he)
In(y) = In(a) + 0In(k) + (1 — 0)In(h)

= ¥t = In(y:) — In(y) = In(ar) + 0OIn(k:) + (1 — 6)In(h;)
— (In(a) + 0In(k) + (1 — 6)In(h))



Log-Linearizing the System

In(a¢) = (1 — p)In(A) + pIn(ar—1) + €
In(a) = (1 — p)In(A) + pln(a)

= ar = par—1 + €t (24)



Log-Linearizing the System

Ye=Ct+ it
S In(1) + X )=t 1)
Xy ~ 1IN —( Xy — X)) =|—
t X t X
=y +1)=c(E+1)+i(i; +1)

~ C. i~
Ye=—-¢G+ —it
y y



Log-Linearizing the System

» Let = In(y:) — In(y*). Then, using Taylor Series
approximations, the system characterizing the equilibrium

becomes: B B
Vi =3+ 0k + (1 — 0)h; (25)
ar = par—1 + € (26)
(%—1+5)5/t — [%—1—|—(5—0(77—1+6)]Et+9(n_1+6)7t (27)
nker1 = (1 — 8)ke + (7 — 1+ 8)i; (28)
V=2 +he (29)

0= %Et + E[(% — 1+ 0)(Jrs1 — kes1) — %Etﬂ] (30)



Log-Linearizing the System

> We can now write the system as:

ViCe = Vaés + V33, (ME)
VaEi(§r1) = Vsl + Vel + V73, (TE)
» (; are static predetermined and nonpredetermined variables,

(727t be]'.

> £, are dynamic predetermined and nonpredetermined
variables, [k, &]'.

P 3; is the technology process.

» Why is & among the dynamic variables?



Matrices

FUAU}

Slooo



Solving the Model - Blanchard and Kahn (1980)

A
c

g(c)=0

]

» Select & st the system isn't explosive (optimal control!).



Solving the Model - Cont.

» Solve systems (TE and ME) so that &;+1 is only a function on
& and a;:
Vi = Wl + V3a: (31)

V4E(&e41) = Vs + We(e + V73; (32)
= (= \Ufl[wzft + W33,

» Plug into transition equation:
VaEr(Err1) = Wsée + VoW Vol + W33, + W73,

= Ei(&rv1) = Y HUs+WeW WL+ W, W+ Wb Hug)s,
(33)

» Desired result!



Solving the Model - Cont.

» Having solved systems on previous slide so that £;11 is only a
function on &; and 3;:

|: l}t-ﬁ-l :| :/\71_//\ |:k

t ~
- . | +Ea 34
Et(Ct+1) Ct:| ! ( )

» A~1JA is the Jordan Decomposition.

» Subsume A into the model variables, denoted by hats:

& = Noke + oo, (35)



Solving the Model - Cont.

» Subsume A into the model variables, denoted by hats.

" = ~ | +Da 36
|:E1_-(Ct+1) 0 J2 Ct t ( )
Et(et+1) = JQEt + D2§t (37)

» J, > 1 — bad choice of ¢; and this explodes.
» Solution: pick ¢; so that it isn't a function of ¢;_1!

» Rearranging:

& = Jy YEe(8er1) — Jy 1 Doy (38)



Solving the Model - Cont.

P lterating on previous equation:
Cer1 = J5 " Ee(Cer2) — 3 Dadria (39)

= & = Jy "Ee(J5 TEe(Cey2) — S5 T D2Bet1) — Jy 1 D3y
=& = ngEt(et+2)) - J£2D2pét - J£1D25f (40)

» Impose transversality condition (i.e. E¢(&:+)) = 0 for large
enough i):

[e.9]

=& = — Z Jz_(i+1)D205t (41)
i=0



Solving the Model - Cont.

> lterating on (33):

& = Moke + Moo,

= Moo = —Ap2ke — Z Jz_(i+1)D2p§t
i=0
> Solving this yields:

17 Dy ..
= ¢ = =M Make + (1/Az2)( = S (@)

» The system will now be saddle-path stable.



Next Time

» Value function iteration.

> See my website for homework.
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