The Effect of Unemployment Insurance Eligibility in Equilibrium

Ying H. Chao Benjamin S. Griffy David Wiczer

Stony Brook University

University at Albany

December 2021

C & G & W (SBU & Albany)

Introduction

Intro

Does UI affect outcomes?

Paying unemployed affects the relative value of unemployment?

- Difficult to study the causal effect because:
 - Eligibility determined by endogenous factors
 - Receipt itself is endogenous, given incomplete take-up
- This paper focuses on the lower bound of eligibility
 - Important as quasi-experimental causal evidence
 - Local estimates here are important b/c high marginal utility

Intro

This paper:

RD estimates & model-based interpretation

- ► UI system has *minimum* income eligibility!
- Exploit a regression discontinuity design:
 - Worker characteristics are continuous across the eligibility cutoff
 - UI payment availability jumps discretely
- ► A causal effect on next earnings ~ \$300 \$900 from UI eligibility

Interpreting the causal effect as:

- better match quality
- higher rents

in light of endogenous UI take-up (claiming & approval)

Intro

Background on the literature

In most cases, the quasi-experimental variation is duration

- Cross-state duration differences: Chodorow-Reich, Coglianese & Karabarbounis (2019) vs Hagedorn, Karahan, Mitman, Manovskii (2019)
- Age differences in duration: Schmieder, von Wachter & Bender (2016) vs Nekoei & Weber (2017)
- A key problem is that duration itself affects outcomes:
 - Longer duration \rightarrow selection, loss of human capital, etc.

Studies often

- Find competing or null results
- Study a small subset of the unemployed—bad location for a LATE

Reduced-form estimates

Credibly identified, quasi-experimental, reduced-form, causal estimates

Reduced-form estimates

Graphical evidence of the discontinuity

Figure: Running variable is earnings relative to threshold

States choose minimum earnings thresholds

Figure: The state-year distribution of minimum earnings requirements for covered employment in the previous year. $\sim \frac{1}{5}$ are below the cutoff.

- Below the threshold, definitely ineligible
- Above the threshold, mostly eligible but not 100% takeup

C & G & W (SBU & Albany)

Data on earnings histories

Administrative data on earnings to accurately measure eligibility

- Longitudinal Employer-Household Dynamics (LEHD) is administrative earnings data based on UI accounts
- Sample of 2% of population in 17 states, approximately 0.7% of labor force
- Quarterly frequency, so a separation is:
 - Full quarter of non-employment
 - Two abutting employers without a quarter in which both paid
 - Two abutting employers with a quarter in which both paid, but less than the minimum of the two adjacent quarters

Reduced-form estimates

The RDD estimating equation

We estimate the following regression:

$$y_{i,t} = \mathbb{I}(B_t \ge \underline{B}_{s,y}) f\left(\frac{B_t - \underline{B}_{s,y}}{\underline{B}_{s,y}}, \gamma_R\right) + \mathbb{I}(B_t \le \underline{B}_{s,y}) f\left(\frac{B_t - \underline{B}_{s,y}}{\underline{B}_{s,y}}, \gamma_L\right) \\ + \beta B_{i,t} + D_y + D_s + \epsilon_{i,t}$$

Where *i* indexes the individual, *t* indexes time, *s*, *y* indexes the state and year of *i*, *t*

- ► f() is a polynomial/kernel regression w/ parameters γ_L, γ_R
- \blacktriangleright *B_t* are base period earnings (4 qtrs prior to qtr of separation)
- ▶ <u>*B*</u> is the minimum earnings requirement
- D_y and D_s are time/location dummies

Estimate of fuzzy treatment effect

We use local linear regression with independent bandwidths (Calonico et al, 2014) to estimate:

$$\lim_{B_t \to +\underline{B}_{s,y}} E[f(\cdot, \gamma_R) | \cdot] - \lim_{B_t \to -\underline{B}_{s,y}} E[f(\cdot, \gamma_L) | \cdot]$$

Dependent	y _{i,t}		$\frac{y_{i,t}}{\underline{B}_{s,v}}$	
	(1)	(2)	(3)	(4)
Bias-Corrected	318.92	276.913	0.102	0.0970
	(67.47)	(69.22)	(0.0351)	(0.0328)
Robust	318.92	276.913	0.102	0.0970
	(80.81)	(82.71)	(0.0415)	(0.0393)
With <i>B_t</i> control		Х		Х

Table: Effect of UI receipt in 2013\$ or as a fraction of cutoff. Standard errors in parentheses

Using the SIPP to "compliance"

Potentially two reasons for non-compliance:

- 1. Ineligibility due to other monetary or non-monetary criteria
- 2. Endogenous non-takeup.

Sample SIPP for $\frac{B_t - \underline{B}_{s,y}}{\underline{B}_{s,y}} \in (0, 0.2)$

	Ineligibility	Non-claiming
Non-Compliance	0.405	0.434
Implied effect	536.55	946.20

Table: The underlying treatment can be \sim 3X

ineligibility from self-reported separation reason

Are characteristics continuous across $B_{i,t} = \underline{B}_{s,y}$?

	Born	Tenure	Some college	Female	Non-white	Employment
$< \underline{B}_{s,v}$	1973.63	12.85	0.49	0.54	0.37	0.54
- 19	(0.058)	(0.099)	(0.002)	(0.002)	(0.002)	(0.0015)
$> \underline{B}_{s,v}$	1973.06	12.48	0.49	0.53	0.36	0.51
- 13	(0.065)	(0.112)	(0.002)	(0.002)	(0.002)	(0.0017)

Table: Characteristics within 2% of $B_{i,t} = \underline{B}_{s,y}$. Standard errors in parentheses.

Check for "manipulation," i.e. excess mass above/below B_{s,y} Statistic P-value

-1.40 0.1620

Employment before and after the separation

Figure: Employment rate among separators by base-period earnings Why the low base-period earnings?

Non-employment (often at same employer)

C & G & W (SBU & Albany)

Match quality vs. rents

What drive the earnings jump?

- Rents: workers' outside option is higher, so larger share of production
- Match quality: workers' can wait, so more productive next job Interpret tenure as proxy for match quality:

Dependent	$ au_{i,d}$		E _{i,d}	
	(1)	(2)	(3)	(4)
Bias-Corrected	-0.004	-0.009	-0.0042	-0.0036
	(0.038)	(0.033)	(0.0047)	(0.0047)
Robust	-0.004	-0.009	-0.0042	-0.0036
	(0.040)	(0.044)	(0.0056)	(0.0051)
With B_t control		Х		Х

Table: Average tenure (quarters) and employment rate upon re-employment

Analytical model

An analytical model to frame concepts

Interpreting the results

Model gives interpretation for two features

- 1. Should we "inflate" the fuzzy RD estimate?
 - Non-compliers in the treatment group would have the same treatment?
 - Depends on why they're non-compliers
- 2. What suggests whether the effect is rents or productivity?
 - In many models, employment duration indicates match quality
 - What is the primitive that is indicated by our estimates?

Here: analytically tractable model to illustrate answers

Setup

- One period, workers start unemployed, no UI.
- ▶ At start of period, unemployed can choose to claim UI (ℓ):
 - Costs φ utility
 - Probability ξ of approval after claim.
- ► colorredDirected search over piece-rate w (match rates $p(\theta), q(\theta)$)
- Reservation strategy over random match quality, ž
- Posting cost κz with free entry
- Production if become employed: z ~ F(z), paid wz
- UI receivers get b_R and non-receivers get b_N .

Workers' problem

$$\max_{\ell \in \{0,1\}} \ell \left\{ \xi(\max_{p,\check{z}} pw \int_{\check{z}}^{1} zdF(z) + (1 - p(1 - F(\check{z})))b_{R}) \\ (1 - \xi)(\max_{p,\check{z}} pw \int_{\check{z}}^{1} zdF(z) + (1 - p(1 - F(\check{z})))b_{N}) - \phi \right\} \\ + (1 - \ell) \left\{ \max_{p,\check{z}} pw \int_{\check{z}}^{1} zdF(z) + (1 - p(1 - F(\check{z})))b_{N} \right\}$$

Timing:

- Choose whether or not to claim benefits (l)
- Receive or not with probability ξ
- Choose search direction p and productivity threshold ž

Heterogeneous claiming: costs or outside options?

Claim if

$$egin{aligned} U_R(\phi, b_R) &\geq U_N(\phi, b_N) \Leftrightarrow \max_{p, \check{z}} pw \int_{\check{z}}^1 z dF(z) + (1 - p(1 - F(\check{z}))) b_R - rac{\phi}{\xi} \ &\geq \max_{p, \check{z}} pw \int_{\check{z}}^1 z dF(z) + (1 - p(1 - F(\check{z}))) b_N \end{aligned}$$

(view costs as either utility cost, ϕ , or approval probability, ξ) differences can be driven by $\phi \sim G_{\phi}$ or $b_N \sim G_b$

- The policies depend on the state: $p(\phi, b), \check{z}(\phi, z)$
- If $\frac{\phi}{\xi} \sim G_{\phi}$, inflate measured treatment by non-compliance
- If $b_N \sim G_b$, do no inflate measured treatment by non-compliance

Analytical model

The treatment effect in two scenarios

• With ϕ heterogeneity the *observed* treatment is:

$$\widehat{\Delta w} = \int_{\phi} (w_R(\phi) - w_N) \mathbb{I}_{U_R(\phi) \ge U_N} dG_{\phi}(\phi)$$

And the true treatment effect is

$$\Delta w = \frac{\int_{\phi} (w_R(\phi) - w_N) \mathbb{I}_{U_R(\phi) \ge U_N} dG_{\phi}(\phi)}{\int_{\phi} \mathbb{I}_{U_R(\phi) \ge U_N} dG_{\phi}(\phi)}$$

because the non-compliers would adjust:

With b_N heterogeneity the observed & true treatment is:

$$\widehat{\Delta w} = \int_{\phi} (w_R - w_N(b_N)) \mathbb{I}_{U_R \ge U_N(b_N)} dG_b(b_N)$$

because if $U_R < U_N(b_N)$ then $w_R < w_N(b_N)$

C & G & W (SBU & Albany)

Solving backwards for the treatment

Firms' posting choice is

$$V = (-\kappa + q(\theta)(1 - w)) z$$

Implies firm is indifferent between different z

Workers' FOC in direction p yields simple (w, p) policy

$$p_{X} = \left(\frac{1-\alpha}{\kappa}\left(1-\frac{b_{X}}{\tilde{z}_{X}}\right)\right)^{\frac{1-\alpha}{\alpha}} \quad w_{X} = \alpha + (1-\alpha)\frac{b_{X}}{\tilde{z}_{X}}$$

for $x \in \{R, N\}$ where $\tilde{z}_x = \int_{\tilde{z}_x}^1 t dF(t)/(1 - F(z))$ The workers' FOC in \tilde{z}_x sets $\tilde{z}_x = \frac{b_x}{w_x}$

The importance of α

Policies:

$$w_{x}\tilde{z}_{x} = \alpha\tilde{z}_{x} + (1 - \alpha)b_{x}$$
$$\check{z}_{x}w_{x} = b_{x}$$

Recalling, the empirics said most of the $\Delta w \tilde{z}$ came from w not z

Proposition

As
$$\alpha \to 0 \ \frac{\partial w}{\partial b} \frac{b}{w} \to 1 \text{ and } \frac{\partial z}{\partial b} \frac{z}{w} \to 0$$

With $\alpha = 0$, z_R , z_N independent of b_R , b_U .

- α is competitive search analog of bargaining weight with Nash
- Large $\alpha \rightarrow$ extract rents rather than wait for high z

Conclusion

Empirically:

- We estimated a fuzzy RDD at the UI eligibility threshold
- ► The effect of eligibility was ~ \$300 implying \$500-\$950 treatment
- This was mostly due to changes in wages, not employment

Understanding this in light of a model

- Interpreting non-compliance depends on one's stand on
 - heterogeneity in application costs
 - heterogeneity in outside option
- ► The wage effect suggest *very* low worker bargaining weight.

The model

A Quantitative Model of Equilibrium UI Eligibility and Take-Up

What's the model for?

Interpreting the RDD:

- What forces drove this result?
- Is the reduced-form treatment an upper- or lower-bound?

Extrapolating from the RDD:

- Beyond the local treatment, what is the effect of UI?
- Can this reconcile other quasi-experimental evidence, e.g. duration?

Informing search models, generally:

 Exogenous variation in outside options is novel identification of bargaining power

Model Environment

- Infinite horizon, common discount β
- Agents:
 - Employed and unemployed workers (differ by UI status).
 - Matched and unmatched firms.
- Technology:
 - Frictional matching in labor markets.
 - Ul eligibility depends on earnings/emp. history.

Agents

Risk-averse workers with state:

- Employed: wage, productivity, past earnings, hours (w, z, μ, h)
- Unemployed: μ and status
 - receiving UI (R),
 - not rec. UI (NR),
 - not claiming (NC),
 - not eligible/exhausted (X)
- Continuum of profit maximizing risk-neutral firms:
 - Post vacancies that specify piece-rate w.
- Type-distribution $\psi' = \Psi(\psi)$ (suppressed throughout).

The model

Search and Matching Technology

Directed search (Moen, 1997):

- Submarket: homogeneous workers (μ) and firms (w)
- ▶ Workers apply to job in submarket w/ known piece-rate w.
- Matching technology:
 - # of matches in submkt (w, μ) : M = M(u, v) (CRS).
 - Submarket tightness: $\theta(\cdot) = \frac{v}{s}$
 - Worker finding rate: $q(\theta) = \frac{M(u,v)}{v}$

• Job finding rates:
$$p(\theta) = \frac{M(u,v)}{s} = \theta q(\theta)$$

Employed Worker's Problem

States:

- Emp: $s_E = (w, z, \mu, h), s'_E = (w, z', \mu', h')$
- Unemp: $s_U = (\mu')$, depends on eligibility & claiming.
- Value of employment:

$$U_{E}(s_{E}) = u(c) + \beta E[(1 - D(s'_{E}, \delta)U_{E}(s'_{E}) + D(s'_{E}, \delta)U_{U}(s_{U})]$$
(1)
s.t. $c = wh$ (2)
 $z' \sim iid$ (3)

• $D(s'_E, \delta)$: separation indicator

Employed Worker's Problem

States:

- Emp: $s_E = (w, z, \mu, h), s'_E = (w, z', \mu', h')$
- Unemp: $s_U = (\mu')$, depends on eligibility & claiming.

$$\blacktriangleright D(s'_E, \delta) = \max\{d_w(w, z', \mu', h'), \delta, d_f(w, z', h')\}:$$

- $d_w(w, z', \mu', h')$: worker quits $(U_X > U_{Elig.})$
- δ: Cousin Eddie shock
- $d_f(w, z', h')$: fired by firm. Explain at firm's problem.
- \blacktriangleright μ : income eligibility process. Will discuss after more Bellman's.

The model

Firms

- States: $s_J = (w, z, \mu, h), s'_J = (w, z', \mu', h')$
- Matched firms:
 - iid shocks: z and h.
 - separation decision: worker may quit $\delta + d_w$, firm may fire d_f
 - continue w/ value $J(s'_J)$
- ▶ Value of filled vacancy with type-*s*_J worker:

$$J(s_J) = \max(Az - w)h - \tau \tag{1}$$

$$+\beta E_{z'|z,h'|h} \{ D(s'_{J},\delta) V(w',z') + [1 - D(s'_{J},\delta)] J(s'_{J}) \}$$
(2)

$$D(w, z', \mu', \delta, h') = \max\{d_f(w, z', h'), \delta, d_w(w, z', \mu', \delta)\}$$
(4)

$$d_f(w, z', h') = \mathbf{1}_{\{J' < 0\}}$$
(5)

C & G & W (SBU & Albany)

The model

Free Entry and Equilibrium Job-Finding Rates

- Unmatched firms:
 - Pay κ to post (profitable) vacancies.
 - Match w/ prob. $q(\theta(s_J))$.
- ▶ Value of vacancy with type-*s*_J worker:

$$V(s_J) = -\kappa + q(heta(s_J))J(s_J)$$

Free Entry (
$$V(s_J) = 0$$
):

$$egin{aligned} q(heta(s_J)) &= rac{\kappa}{J(s_J)} \ heta(s_J) &= q^{-1}\left(rac{\kappa}{J(s_J)}
ight) \end{aligned}$$

Eqm job finding rate: p(θ) = θq(θ) determined by J, κ
 Eqm: ∂P/∂μ < 0

C & G & W (SBU & Albany)

Unemployed Worker's Problem

- Start in non-claiming state (*NC*). Claim ($\ell = 1$), get w/ prob $\xi(\mu)$
- Then may be one of following $T = \{R, NR, X\}$:
 - R: receiving UI (μ);
 - NR: Not receiving;
 - X: exhausted UI.

Value of unemployment (NC):

$$U_{NC}(\mu) = \max_{\ell \in \{0,1\}} u(c) + \beta E[\mathbb{I}_{\{\ell=1\}}\{\xi(\mu) R_R(\mu')$$
(6)

+
$$(1 - \xi(\mu))R_{NR}(\mu') - \eta - \epsilon$$
} + $\mathbb{I}_{\{\ell=0\}}R_{NC}(\mu')\}$] (7)

s.t.
$$c = b_n$$
 (8)
 $\mu' = \left(1 - \frac{1}{T}\right)\mu$ (9)
 $\xi = \begin{cases} \xi_h & \text{if } \mu \ge \bar{\omega} \\ \xi_l & \text{if } \mu < \bar{\omega} \end{cases}$ (10)

December 2021

C & G & W (SBU & Albany)

ł

The model

Unemployed Worker's Problem

- Then may be one of following $T = \{R, NR, X\}$:
 - ► *R*: receiving UI (μ), lose stochastically (λ), depends on μ ($\xi(\mu)$);
 - *NR*: Not receiving $(\lambda, \phi = 0)$;
 - X: exhausted UI ($\lambda, \phi, \xi = 0$).

► Value of unemployment (*R*):

$$U_R(\mu) = u(c) - \phi$$

+ $\beta E[\{\lambda R_x(\mu') + (1 - \lambda) R_R(\mu')\}]$

s.t.
$$c = b_r(\mu)$$

 $\mu' = \left(1 - \frac{1}{T}\right)\mu$
 $\xi(\mu) = \begin{cases} \xi_h & \text{if } \mu \ge \bar{\omega} \\ \xi_l & \text{if } \mu < \bar{\omega} \end{cases}$
(6)

The model

UI eligibility

- Income eligibility:
 - updates each period.
 - μ represents the past earning in the latest four quarters, and μ evolves as the following:

$$\mu' = \begin{cases} \left(1 - \frac{1}{T}\right)\mu + \frac{1}{T}wh, & \text{if employed} \\ \left(1 - \frac{1}{T}\right)\mu, & \text{otherwise} \end{cases}$$

- No fault eligibility:
 - Quit \rightarrow not eligible, can apply (probabilistically caught).
 - Fired: eligible.
- All must pay cost of take-up.

UI take-up

- Decision of UI take-up:
 - Random, logit cost of application, ϵ .
 - Fixed cost of application, η .
 - Then the probability of taking up UI is

$$\Pr(E_{z'|z}\{\xi R_{R} + (1-\xi)R_{NR} - \epsilon - \eta\} > E_{z'|z}[R_{NC}]) = \frac{1}{1 + \exp(E_{z'|z}\{R_{NC} - [\xi R_{R} + (1-\xi)R_{NR} - \eta])\}}$$

- Keys for empirical strategy:
 - h is iid, eligibility around threshold random.
 - Some workers quit, can capture this.
 - Some workers receive UI despite ineligibility, can capture this.
 - η defined by $\xi = 0$ case

Equilibrium

A *Block Recursive Equilibrium* (BRE) in this model is a set of value functions, associated policy and market tightness functions, which satisfy

- 1. The policy functions solve the workers problems.
- 2. θ satisfies the free entry condition for all open submarkets.
- 3. The aggregate law of motion is consistent with all policy functions.

Preliminary Computational Results

Some parameters

Utility	$\frac{c^{1-\gamma}}{1-\gamma}$	b _n	0.01
Matching	$n_0 \frac{u'v}{(u''_1 + v''_1)^{1/n_1}}$	(n_0, n_1)	(0.5,0.5)
Production	Az,	Δ_z	0.01
		Δ_h , Pr $h = 0$	0.1,0.04
		(ξ_I,ξ_h)	(0, 0.8)
		\bar{w}	0.5
		ϕ	0.005
		au	0.01
		δ	0.3

Wage choice policies

Figure: Wage policies show the behavioral effect of UI receipt

Take-up policy

Figure: Those with higher value of claiming do so, and some with no chance do as well

The model generates the same discontinuity

Figure: The model's discontinuity: averages over claiming and hours

C & G & W (SBU & Albany)

Certainty-equivalent welfare from UI receipt Welfare in Consumption Equivalence

Figure: The model allows use to extrapolate welfare gains of UI beyond the cutoff

Quarterly earnings distribution

Figure: Hours shocks and endogenous wage policy generates a smooth past earnings distribution C & G & W (SBU & Albany) UI Cliff December 2021 43/44

μ distribution at separation

Figure: Hours shocks and endogenous wage policy generates a smooth past earnings distribution C & G & W (SBU & Albany) UI Cliff December 2021 44/44 Appendix

Appendix

Appendix