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Announcements

I Today: value function iteration.

I Using:
1. Grid search;

2. Interpolation (grid search with functions filling in between
nodes).

I Go through examples with neoclassical growth model.

I Empirical regularities project due in two weeks!

I Note: Endogenous separation code on cluster!

I (I will be flexible on the due date, but you do need to present
on the following Tuesday)



Better root for the Ducks this weekend...



Solving a Model

I When we say “solve a model” what do we mean?
1. Find the equilibrium of the model.

2. Generally, determine the policy functions.

3. Determine the transition equations given the individual and
aggregate state.

4. i.e., aggregate up the policy functions and determine prices
given distributions.

I Generically, this is hard: many states, non-linear decision
rules, etc.



Solving a Model
I Generically, this is hard: many states, non-linear decision

rules, etc.
I Much of quantitative macro is about finding “shortcuts”

without sacrificing accuracy of solution (some we have seen):
1. Planner’s problem: use welfare theorems to remove prices from

problem.
2. Rational expectations & complete markets: Aggregate worker

decision rules by assuming they make same predictions about
future prices, and face same consumption risk.

3. Exogenous wage distribution/prices: agents do not respond to
decisions of other agents.

4. Block Recursive Equilibrium: agents face an equilibrium with
individual prices, i.e., no need to know distribution.

I Linearization: assume the economy is close enough to
steady-state that transition equations (i.e., policy functions)
are close to linear within small deviations.

I Value function iteration: discretize state space and solve
model at “nodes” in state space.



Discrete Mortensen and Pissarides (1994) Model
I iid productivity: draw ε ∼iid F (ε); evolve at rate λ

I Wages determined by Nash Bargaining (bargaining power α).

I agg shocks Z, endogenous separations when ε < εd

I Value of unemployment:

U(z) = b+β[p(θ)
∫ ε̄

ε
[max{W (x , z ′),U(z ′)}]dF (x)+(1−p(θ))U(z ′)].

I Value of employment:

W (ε, z) = w + βE [λα

∫ ε̄

ε
[max{S(x , z ′), 0} − S(ε, z ′)] dF (x)

+ (1 − λ)W (ε, z ′)]

I S(x , z): joint surplus of firm & worker.



Firms
I Post vacancy at cost κ.
I Value of a filled vacancy:

J(ε, z) = ezε− w + βE [λ(1 − α)

∫ ε̄

ε

max{S(x , z ′), 0} dF (x)

+ (1 − λ)J(ε, z ′)]

I Value of unfilled vacancy:

V (z) = −κ+ βE [q(θ)
∫ ε̄

ε
[max{J(x , z ′),V (z ′)}]dF (x)

+ (1 − q(θ))V (z ′)]

I Free entry (V = 0)→ match rate: q(θ) = κ
βE [

∫
εd

J(x ,z ′)dF (x)]

I Market tightness: θ = q−1( κ
βE [

∫
JdF (x)])



Surplus and Employment Thresholds

I Impose matching func: p(θ) = Aθ1−η

I Surplus S(ε, z) = W (ε, z)− U(z) + J(ε, z)− V (z):

S(ε, z) = ezε− b + βαE [λ

∫ ε̄

εd

S(x , z ′)dF (x) + (1 − λ)max{S(ε, z), 0}

− Aθ1−η

∫ ε̄

εd

S(x , z ′)dF (x)]

z ′ = ρz + εz , εz ∼ N(0, σε)

I How are we going to solve this model?

I Everything function of surplus.

I Set up grid of ε and z .



Value Function Iteration
I Basic approach to value function iteration:

1. Create grid of points for each dimension in state-space.

2. Specify terminal condition St for t = T at each point in
state-space.

3. Solve problem of agent in period T − 1:
St(ε, z) = ezε− b + βE [func(εd)].

4. εd(z) is policy function, which yields the point where
St(εd , z) = 0

5. Check to see if function has converged, i.e.,
|St − St+1| < errtol∀(ε, z)

6. Update St+1 = St

I Interpolation: same idea, but functions used to fill in between
grid points.



Grids
I Want: smallest grids reasonable.
I Grids are both shocks, pick set number of standard deviations.
I Approximate a continuous AR(1) process with a markov

process:
I Create grid of potential z values {z1, ..., zN}, approximate

AR(1) process through transition probabilities.

E [zt ] = E [ρzt−1 + εz,t ] = 0 (1)
V [zt ] = V [ρzt−1 + εz,t ] = ρ2σ2

z + σ2
εz (2)

→ (1 − ρ2)σ2
z = σ2

εz (3)
I Define this process G(ε̄z)
I Tauchen (1986):

zN = m(
σ2
εz

1 − ρ2 ) (4)

z1 = −zN (5)
z2, ..., zN−1 equidistant (6)



Expectations with AR(1) Process
I Tauchen (1986):

zN = m(
σ2
εz

1 − ρ2 ) (7)

z1 = −zN (8)
z2, ..., zN−1 equidistant (9)

I Create an nxn transition matrix Π using probabilities

πij = G(zj + d/2 − ρzi)− G(zj − d/2 − ρzi) (10)
πi1 = G(z1 + d/2 − ρzi) (11)
πiN = 1 − G(zN + d/2 − ρzi) (12)

I Idiosyncratic shocks (εz):
I Right way to do it: Gaussian Hermite Quadrature.
I Here: Same as above, set ρ = 0.



Endogenous Separations

I Problem:

S(ε, z) = ezε− b + βαE [λ

∫ ε̄

εd

S(x , z ′)dF (x)

+ (1 − λ)max{S(ε, z ′), 0} − Aθ1−η

∫ ε̄

εd

S(x , z ′)dF (x)]

ln(z ′) = ρln(z) + εz , εz ∼ N(0, σε)

I Find εd(z) such that S(εd , z) = 0

I S0 =? Safest bet to set it to zero at all ε, z .

I θ0 =? Safest bet to set it to zero at all ε, z .



Value Function First Iteration

I Intuitively, solve for surplus, find ε at which would like to
separate for every z .

I Calculate the following:

ezε1 − b + β × 0 (13)
ezε2 − b + β × 0 (14)

. . . (15)
ezεN − b + β × 0 (16)

I Find εi st S(εi , z) = 0.

I Repeat for all z .



Value Function First Iteration

I Now, check if problem has converged.

I What does this mean?

I The value in the current state is not changing over time.

I i.e., St(ε, z) ≈ St+1(ε, z).

I First iteration: it won’t be.

I What do we do now?

I Update the continuation value:

I St+1 = St for all ε, z

I θ = q−1( κ
(1−α)S )

I Solve same problem again.



Value Function Second Iteration
I Solved for S(ε,Z ) in previous iteration.
I Repeat, solving S ∀ε, z

S(ε, z) = ezε− b + βαE [λ

∫ ε̄

εd

S(x , z ′)dF (x)

+ (1 − λ)max{S(ε, z ′), 0} − Aθ1−η

∫ ε̄

εd

S(x , z ′)dF (x)]

ln(z ′) = ρln(z) + εz , εz ∼ N(0, σε)

I Note that the continuation value is not zero!

ezε1 − b + β × Cont. Val (17)
ezε2 − b + β × Cont. Val (18)

. . . (19)
ezεN − b + β × Cont. Val (20)



Value Function Second Iteration

I We check again to see if it has converged.

I is St(ε, z) ≈ St+1(ε, z).

I What do we do now?

I Update the continuation value:

I St+1 = St for all ε, z

I θ = q−1( κ
(1−α)S )

I Solve same problem again.

I Keep doing this until the difference is very small.



Great, we’re done!

I Not so fast: this isn’t very accurate.
I Very slow if we have large numbers of states & grid points

(scales exponentially).



Fundamental Problem
I The reason we need to use a computer to solve this problem is

that we don’t know the function S(ε, z).

S(ε, z) = ezε− b + βαE [λ

∫ ε̄

εd

S(x , z ′)dF (x)

+ (1 − λ)max{S(ε, z ′), 0} − Aθ1−η

∫ ε̄

εd

S(x , z ′)dF (x)]

ln(z ′) = ρln(z) + εz , εz ∼ N(0, σε)

I What is we approximate S(ε, z) with other functions?
I Some useful properties we can pick these functions to have:

I Continuous
I Differentiable

I If our approximation is accurate enough, we can drop some
grid points!



Interpolation

I Call interpolated function V̂ (k). Then,

S(ε, z) = ezε− b + βαE [λ

∫ ε̄

εd

ˆS(x , z ′)dF (x)

+ (1 − λ)max{ ˆS(ε, z ′), 0} − Aθ̂1−η

∫ ε̄

εd

ˆS(x , z ′)dF (x)]

ln(z ′) = ρln(z) + εz , εz ∼ N(0, σε)

I Where k ′ solves

ezε− b + ˆCont. Val = 0 (21)



Updating
I We do exactly the same thing as before:

S(ε, z) = ezε− b + βαE [λ

∫ ε̄

εd

ˆS(x , z ′)dF (x)

+ (1 − λ)max{ ˆS(ε, z ′), 0} − Aθ̂1−η

∫ ε̄

εd

ˆS(x , z ′)dF (x)]

(22)

I For each z . Then, we check the convergence criteria:

|St − St+1| < errtol (23)

I How do we create the function Ŝ(ε, z)?
I “Connect the dots” of St(ε, z) between all ε levels in order for

each z .
I In principle, interpolate in both dimensions, ε and z



Interpolation

I Left is function evaluated at sample points x1, ..., xN . Right is
for (linearly) interpolated function:



Interpolation

I In constructing our function Ŝ(ε, z), we need to choose an
interpolation scheme.

I Roughly, what order function do we believe will be accurate
enough to mimick the value function:
I First-order (linear)

I Third-order (cubic)

I Fifth-order (quintic)
I Some other useful interpolation routines:

I PCHIP (piecewise cubic hermite interpolating polynomial):
shape-preserving (not “wiggly”) continuous 3rd order spline
with continuous first derivative.



Interpolation

I Choice DOES matter:



Polynomial Interpolation

I Suppose we have a function y = f (x) for which we know the
values of y at {x1, ..., xn}.

I Then, the nth-order polynomial approximation to this function
f is given by

f (x) ≈ Pn(x) = anxn + an−1xn−1 + ...+ a1x + a0 (24)

I Then, we have a linear system with n coefficients.

I We could write this as y = Xβ. Look familiar?



Polynomial Interpolation

I We solve 1 x0 x2
0 ... xn

0
...

...
...

...
...

1 xn x2
n ... xn

n


a0

...
an

 =

y0
...

yn

 (25)

I For a0, ..., an

I What’s the example we are all familiar with? Linear
regression: y = α+ Xβ.

I In practice, this is computationally expensive, but this is the
intuition.



Great, we’re done!

I Not so fast: how do we handle expected values?
I Depends on expectation.
I Need an accurate way to perform numerical integration.



Surplus function

I Problem:

S(ε, z) = ezε− b + βαE [λ

∫ ε̄

εd

ˆS(x , z ′)dF (x)

+ (1 − λ)max{ ˆS(ε, z ′), 0} − Aθ̂1−η

∫ ε̄

εd

ˆS(x , z ′)dF (x)]

ln(z ′) = ρln(z) + εz , εz ∼ N(0, σε)

I Make sure your process for z stays non-negative.



Expectations Generally

I Expected values also need to be calculated carefully.

I Continuation surplus from before:

E [V (ε, z ′)] (26)

I If not an AR(1)/markov process, need to approximate integral.

I Generically, pick function f and weights wi

E [V (ε, z ′)] =
∫ b

a
f (x)dx ≈

N∑
i=1

wi f (xi) (27)

I xi may be known or picked optimally.

I We will return to this in the future.



Next Time

I Wage dispersion, Hornstein, Krussell, Violante.

I Empirical regularities project due soon!
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