Quantitative Macro-Labor: Inequality in Heterogeneous Agent Models

Professor Griffy

UAlbany

Fall 2022

Announcements

- Today: heterogeneous agents with frictional labor markets.
- How does this affect inequality? (Griffy, 2021)
- Start writing down and solving your model.
- Due in less than 2(!) weeks!
- Today: last class that I'm teaching

Wealth and Borrowing Constraints

Low wealth limits ability to borrow early in the life-cycle.

Feared or were denied credit (ages 20-30):

- 1st quartile (Survey of Consumer Finances, 2013): 50%
- Rest of population (SCF, 2013): 33%
- Less likely to be able to borrow in the future (ages 20-30):
 - 1st quartile (SCF, 2013): unsecured 80% of total debt
 - Population Average (SCF, 2013): unsecured 41% of total debt
- Wealth and earnings are correlated:
 - Low wealth, lower initial earnings;
 - Lower slope over life-cycle.

Question

- How do differences in wealth, human capital, and learning ability at labor market entry impact life-cycle
 - job search behavior?
 - human capital accumulation?
 - consumption?

What channels are quantitatively important?

What I Do

Construct quantitative general equilibrium life-cycle model:

- search and matching in the labor market;
- risk-aversion and borrowing constraints;
- endogenous human capital accumulation.
- Estimate model using indirect inference.
- Consider counterfactual initial conditions.
- Decompose effect into interaction between wealth, search, and human capital.

Model Environment

• Life-cycle model: age discrete, indexed by t; retire at T + 1.

- Agents:
 - Employed and unemployed workers.
 - Matched and unmatched firms.
- Technology:
 - Frictional matching in labor markets.
 - Endogenous human capital accumulation.
 - Borrowing constraints.
- Initial heterogeneity:
 - ▶ Initial wealth (a_0) , human capital (h_0) , and learning ability (ℓ) .

Agents

Risk-averse workers indexed by (a, h, ℓ, t) :

- Employed (μ), unemployed w/ UI (b_{UI}) or w/o UI (b_L).
- Search on and off job.
- Consume & save s.t. borrowing constraint $a' \geq \underline{a}_t$.
- Emp.: portfolio allocation (HC inv. & precautionary savings).
- Unemployed & employed: stochastic HC depreciation.
- Continuum of profit maximizing firms:
 - Risk neutral. Produce using human capital.
 - Post vacancies that specify piece-rate μ .
- World risk-free rate r_F ; common discount rate β .
- Type-distribution $\phi' = \Phi(\phi)$ (suppressed throughout).

Search and Matching Technology

Directed search (Moen, 1997):

Submarket: homogeneous workers (a, h, ℓ, t) and firms (μ)

- Workers apply to job in submarket w/ known piece-rate μ.
- Matching technology:
 - *#* of matches in submkt (μ, a, h, ℓ, t): M_t = M(s_t, v_t) (CRS).
 Submarket tightness: θ_t(·) = ^{v_t}/_s.
 - Worker finding rate: $q(\theta_t) = \frac{\dot{M}(s_t, v_t)}{v_t}$

• Job finding rates:
$$p(\theta_t) = \frac{M(s_t, v_t)}{s_t} = \theta_t q(\theta_t)$$

Firms

- States: $s_J = (\mu, a, h, \ell), s' = (\mu', a', h', \ell), s'_J = (\mu, a', h', \ell)$
- Matched firms:
 - produce (1 − τ)h, pay μ(1 − τ)h
 separate exog. w/ prob. δ; endog. w/ prob. λ_Ep(θ_t(s'))
 continue w/ value J_{t+1}(s'_J)
- Value of filled vacancy with age-t type-s_J worker:

$$\begin{aligned} J_t(s_J) &= (1-\mu)(1-\tau)h + \beta E[(1-\delta)(1-\lambda_E p(\theta_t(s')))J_{t+1}(s'_J)] \\ h' &= e^{\epsilon'}(h+H(h,\ell,\tau)) \\ \epsilon' &\sim \mathcal{N}(\mu_{\epsilon},\sigma_{\epsilon}) \end{aligned}$$

• Worker decisions:
$$\mu', a', h', \tau$$
.

Free Entry and Equilibrium Job-Finding Rates

Unmatched firms:

- Pay κ to post (profitable) vacancies.
- Match w/ prob. $q(\theta_t(s_J))$.
- Value of vacancy with age-t type-s_J worker:

$$V_t(s_J) = -\kappa + q(heta_t(s_J))J_t(s_J)$$

Free Entry $(V_t(s_J) = 0)$:

$$egin{aligned} q(heta_t(s_J)) &= rac{\kappa}{J_t(s_J)} \ heta_t(s_J) &= q^{-1}(rac{\kappa}{J_t(s_J)}) \end{aligned}$$

Eqm. job finding rate: p(θ_t) = θ_tq(θ_t) determined by J_t, κ
 Eqm.: ∂P/∂μ < 0

Unemployed Searcher's Problem

States (w/ UI):
$$s_U = (b_{UI}, a, h, \ell)$$
, $s'_E = (\mu', a, h, \ell)$

States (w/o UI):
$$s_U = (b_L, a, h, \ell)$$
, $s'_E = (\mu', a, h, \ell)$

Unemployed searcher's problem:

- Apply for job w/ piece-rate μ' .
- ► Transition to employment w/ prob. $p(\theta_t(s'_E))$.
- Continue w/ value $W_t(s'_E)$ if offered job.
- Continue w/ value $U_t(s_U)$ if no offer.
- Value of searching while unemployed:

$$R_t^U(s_U) = \max_{\mu'} p(heta_t(s'_E)) W_t(s'_E) + (1 - p(heta_t(s'_E))) U_t(s_U)$$

Unemployed Searcher's Problem

Value of searching while unemployed:

 $R_t^U(s_U) = \max_{\mu'} p(\theta_t(s'_E)) W_t(s'_E) + (1 - p(\theta_t(s'_E))) U_t(s_U)$

Competitive labor market:

▶ Paid marginal product \rightarrow inc. inequality because of diffs in HC

ldiosyncratic shocks \rightarrow consumption risk. Insurance via $a - \underline{a}$.

Frictional labor market:

- Frictions $\rightarrow \mu < 1$.
- Employment risk \rightarrow consumption risk.
- Precautionary savings (& UI) only explicit insurance.
- Alternative: decrease μ . \rightarrow (low) wealth can impact earnings.

Unemployed Worker's Problem

States:

• Unemp. w/ UI:
$$s_U = (b_{UI}, a, h, \ell)$$
, $s'_{UI} = (b_{UI}, a', h', \ell)$

• Unemp w/o UI: $s_U = (b_L, a, h, \ell), \ s'_L = (b_L, a', h', \ell)$

Consumption and savings problem:

• Consume & save s.t.
$$a' \geq \underline{a}_t$$
.

• Lose benefits w/ prob. γ .

• Human Capital depreciates: $\epsilon' \sim N(\mu_{\epsilon}, \sigma_{\epsilon})$.

► Value of unemployment (w/ UI):

$$U_t(s_U) = \max_{\substack{c,a' \ge a_t}} u(c) + \beta E[(1-\gamma)R_{t+1}^U(s'_{UI}) + \gamma R_{t+1}^U(s'_L)]$$

s.t. $c + a' \le (1 + r_F)a + b_{UI}$
 $h' = e^{\epsilon'}h$
 $\epsilon' \sim N(\mu_{\epsilon}, \sigma_{\epsilon})$

Unemployed Worker's Problem

States:

► Value of unemployment (w/ UI):

$$U_t(s_U) = \max_{\substack{c,a' \ge \underline{a}_t}} u(c) + \beta E[(1-\gamma)R_{t+1}^U(s'_{UI}) + \gamma R_{t+1}^U(s'_L)]$$

s.t. $c + a' \le (1 + r_F)a + b_{UI}$
 $h' = e^{\epsilon'}h$
 $\epsilon' \sim N(\mu_{\epsilon}, \sigma_{\epsilon})$

Employed Worker's Problem

States:

- Emp.: $s_E = (\mu, a, h, \ell), s'_E = (\mu, a', h', \ell)$
- Unemp. w/ UI: $s'_U = (b_{UI}, a', h', \ell)$

Employed Worker's Problem:

- ▶ Portfolio alloc.: $(a' \ge a_t, \tau)$, τ to HC inv. & (1τ) to work.
- Stochastic HC depreciation $\epsilon' \sim N(\mu_{\epsilon}, \sigma_{\epsilon})$

• Lose job w/ prob. δ , receive $b(1-\tau)\mu h$.

Value of employment:

$$W_t(s_E) = \max_{c,a' \ge \underline{a}_t,\tau} u(c) + \beta E[(1-\delta)R_{t+1}^E(s'_E) + \delta R_{t+1}^U(s'_U)]$$

s.t. $c + a' \le (1 + r_F)a + (1 - \tau)\mu h$
 $b_{UI} = b(1 - \tau)\mu h$
 $h' = e^{\epsilon'}(h + \ell(h\tau)^{\alpha}), \quad \epsilon' \sim N(\mu_{\epsilon}, \sigma_{\epsilon})$

Employed Worker's Problem

$$W_t(s_E) = \max_{c,a' \ge \underline{a}_t, \tau} u(c) + \beta E[(1-\delta)R_{t+1}^E(s'_E) + \delta R_{t+1}^U(s'_U)]$$

s.t. $c + a' \le (1 + r_F)a + (1 - \tau)\mu h$
 $b_{UI} = b(1 - \tau)\mu h$
 $h' = e^{\epsilon'}(h + \ell(h\tau)^{\alpha}), \quad \epsilon' \sim N(\mu_{\epsilon}, \sigma_{\epsilon})$

Human capital inv. is risky:

- 1. Rate of return uncertain: stochastic dep., unknown ex-ante.
- 2. Illiquid: no consumption smoothing value when unemployed.
- Rate of return risk determines allocation for "wealthy-enough."
- Separation while low-wealth \rightarrow take low- μ job.
- \blacktriangleright \rightarrow Exposure to unemployment risk distorts allocation.

Equilibrium

A Block Recursive Equilibrium (BRE) in this model is a set of value functions, $U_t, W_t, R_t^E, R_t^U, J_t, V_t$, associated policy and market tightness functions, a', c, μ', τ , and θ_t , which satisfy

- 1. The policy functions $\{c, \mu', a', \tau\}$ solve the workers problems, W_t, U_t, R_t^E, R_t^U .
- 2. $\theta_t(\mu, a, h, \ell)$ satisfies the free entry condition for all submarkets (μ, a, h, ℓ, t) .
- 3. The aggregate law of motion is consistent with all policy functions.

Estimation

Indirect Inference (conditional MoM) (Gourieux et al, 1993):

- Select reduced-form analogs to structural model.
- Objective: match coefs. for regs. w/ data & simulated data.
- Minimize by changing structural parameters.
- Basic approach:
 - Estimate effect of wealth on job search behavior.
 - Match age-earnings regs (eqm. outcome) by initial heterogeneity.
 - Match observable marginal distributions.

Empirical Preliminaries

- Quarterly model, ages 23-64, retire at 65.
- Model parameters: $\sigma = 2, r_F = 0.012, \beta = \frac{1}{1+r_F}$
- Power utility + unemp leisure: $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$
- ► HC Evolution: $h' = e^{\epsilon}(h + H(h, \ell, \tau)) = e^{\epsilon}(h + \ell \times (h\tau)^{\alpha})$
- ▶ Natural borrowing constraint: $\underline{a}_t = \sum_{j=t}^T \frac{b_L}{(1+r_F)^j}$
- Initial conditions:
 - $\blacktriangleright (a_0, h_0, \ell) \sim LN(\psi, \Sigma)$
 - Correlations $\rho_{AH}, \rho_{AL}, \rho_{HL}$
- Full list of preset values:

Empirical Preliminaries

- Quarterly model, ages 23-64, retire at 65.
- Model parameters: $\sigma = 2, r_F = 0.012, \beta = \frac{1}{1+r_F}$
- Power utility + unemp leisure: $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$
- ► HC Evolution: $h' = e^{\epsilon}(h + H(h, \ell, \tau)) = e^{\epsilon}(h + \ell \times (h\tau)^{\alpha})$
- ▶ Natural borrowing constraint: $\underline{a}_t = \sum_{j=t}^T \frac{b_l}{(1+r_F)^j}$
- Initial conditions:
 - $\blacktriangleright (a_0, h_0, \ell) \sim LN(\psi, \Sigma)$
 - Correlations $\rho_{AH}, \rho_{AL}, \rho_{HL}$
- Full list of preset values:

Key Estimated Parameters and Coefficients

Parameter Estimates

- ▶ Age-23 constraint: <u>a</u>₀ = −\$6,378 (2011\$)
- HC curvature: $\alpha = 0.5687$.
- HC dep.: $(\mu_{\epsilon}, \sigma_{\epsilon})$ -0.0249, 0.0621).
- Corrs.: $\rho_{AH} = 0.3253 \quad \rho_{A\ell} = 0.4642 \quad \rho_{H\ell} = 0.6915.$
- Coefficient Estimates
 - $\blacktriangleright \frac{\partial ln(W_{i,j+1})}{\partial ln(UI_i)}: \text{ Data: } 0.4652; \text{ Model: } 0.2918,$
 - $\frac{\partial \ln(W_{i,j+1})}{\partial \ln(U_{l_i})}$ (q > 1): Data: -0.4425; Model: -0.2731
 - $\frac{\partial \ln(H_{i,j+1})}{\partial \ln(U_{l_i})}$ (q = 1): Data: -0.8664; Model: -0.932,
 - ▶ $\frac{\partial \ln(H_{i,j+1})}{\partial \ln(U_{l_i})}$ (q > 1): Data: -0.4542; Model: -0.3336
 - ρ_{AH} : intercepts by wealth underpredicts higher quintiles.
 - *ρ_{AL}*: overpredicts slopes by wealth in higher quintiles.
 - *ρ_{HL}*: slopes by AFQT score quintile close.

Findings

- Mechnisms & life-cycle earnings growth $w_t = \mu_t (1 \tau_t) h_t$
- Two sources of earnings growth:
 - Movement up job (piece-rate) ladder. μ_t
 - Investment in human capital. h_t
- Consider two experiments, compare Inc., Cons., etc.:
 - 1. Decrease initial conditions of median worker by 1 SD for each (a_0, h_0, ℓ) .
 - 2. Eliminate initial dispersion for each (a_0, h_0, ℓ) .
- Decompose interaction between wealth, search, and human capital.

Job Ladder

Human Capital

Income

- Job ladder: important early.
- ► Human capital: important mid/late.

Sources of Inequality

Explore 3 ways:

- 1. Set h_0, ℓ to median initial value.
 - i.e., resulting variation due to wealth heterogeneity **only**.
 - Compare to previous figures.
- 2. Subject median worker to -1 SD in each (a_0, h_0, ℓ) .
 - Same experiment as HVY (2011).
- 3. Eliminate dispersion in initial conditions (separately).
- Focus on changes in average outcomes & by wealth.

Income

Human Capital

Findings: Median Worker

	Δ Cor	nsumption	Δ Earnings	Δh	$\Delta \tau$	$\Delta \mu'$
Change	(%)	HVY (%)	(%)	(%)	(%)	(%)
Wealth	-6.4	-1.6	-5.8	-2.5	-5.7	-4.8
Human Capital	-3.8	-28.3	-3.6	-4.8	-5.9	-0.4
Learning Ability	-15.5	-2.6	-16.8	-29.1	-96.3	0.3

Findings: No Dispersion

	Δ Income (%)			Δh (%)				$\Delta \mu$ (%)				
Counterfactual	1st	3rd	5th	Ave	1st	3rd	5th	Ave	1st	3rd	5th	Ave
$a_0 = E[a_0]$	5.79	1.09	-2.06	1.03	1.50	0.44	-1.33	0.12	5.44	0.89	-1.84	1.42
$h_0 = E[h_0]$	1.74	-0.65	-3.40	-1.10	3.16	0.69	-2.14	0.23	0.69	-0.16	-0.52	-0.01
$\ell = E[\ell]$	24.85	1.24	-17.97	-1.07	37.75	11.32	-8.37	9.65	1.26	-0.51	-1.35	-0.29

Decomposing the Interaction

How does interaction between wealth, search, and human capital affect inequality?

- Compare outcomes in baseline model to 3 restrictions.
- Restrictions:
 - ▶ R1: exogenous portfolio $\tilde{\tau}_t(\mu, a, h, \ell) = \tau_t(\mu, \bar{a}_t, h, \ell) \forall t$ and $\tilde{a'}_t(\mu, a, h, \ell) = a_t(\mu, \bar{a}_t, h, \ell) \forall t$.
 - Bewley model: frictionless labor market, still human capital & savings decision.
 - ► R2: Bewley + exogenous portfolio $\tilde{\tau}_t(\mu, a, h, \ell) = \tau_t(\mu, \bar{a}_t, h, \ell) \forall t$ and $\tilde{a'}_t(\mu, a, h, \ell) = a_t(\mu, \bar{a}_t, h, \ell) \forall t$.

Decomposing the Interaction

- ▶ R1: exogenous portfolio $\tilde{\tau}_t(\mu, a, h, \ell) = \tau_t(\mu, \bar{a}_t, h, \ell) \forall t$ and $\tilde{a'}_t(\mu, a, h, \ell) = a_t(\mu, \bar{a}_t, h, \ell) \forall t$.
- Bewley model: frictionless labor market, still human capital & savings decision.
- ► R2: Bewley + exogenous portfolio $\tilde{\tau}_t(\mu, a, h, \ell) = \tau_t(\mu, \bar{a}_t, h, \ell) \forall t$ and $\tilde{a'}_t(\mu, a, h, \ell) = a_t(\mu, \bar{a}_t, h, \ell) \forall t$.
- R1 Base: precautionary effect on human capital by wealth in baseline model.
- R2 Bewley: precautionary effect on human capital by wealth without frictional labor markets.
- Difference between these comparisons: interaction between wealth, search, human capital.

Findings: Exogenous Human Capital Comparison

	Δau (%)				Δh (%)			
Counterfactual	1st	3rd	5th	Ave	1st	3rd	5th	Ave
%Δ(Base→R1)	33.18	17.84	6.42	16.51	6.01	4.90	1.36	4.09

Findings: Frictionless Labor Markets Comparison

	$\Delta \tau$				Δh				
Counterfactual	1st	3rd	5th	Ave	1st	3rd	5th	Ave	
Δ (Bewley \rightarrow R2)	15.15%	12.49%	6.80%	11.16%	3.29%	3.75%	2.16%	3.19%	
Effect of Wealth \times Search	18.03pp	5.35pp	-0.37pp	5.35pp	2.72pp	1.16pp	-0.80pp	0.90pp	

Findings: Interaction

Counterfactual	1st	3rd	5th
%∆Income (Base→R1)	41.11%	3.24%	-26.87%
% Explained by Interaction	6.61%	35.69%	2.98%

Conclusion

Constructed quantitative life-cycle model:

- Risk-averse agents who face borrowing constraints.
- General equilibrium labor market frictions.
- Endogenous earnings growth through human capital choice.
- Estimated using indirect inference.
- Findings:
 - Borrowing constraints & search impact low-wealth individuals.
 - Wealth dynamically alters the earnings process through search behavior and human capital accumulation.
 - Initial wealth causes larger life-cycle changes than initial human capital (and sometimes learning ability).
- Don't forget to start your model projects!