Quantitative Macro-Labor: Heterogeneous Agent Models

Professor Griffy

UAlbany

Fall 2022

Announcements

- ► Today: Solving heterogeneous agent models.
- Final project: write down and solve a model to explain your empirical regularity.
- Empirical regularities project due next Tuesday.
- No class next week (but project still due!)

Heterogeneous Agent Production Economy

In a production economy, the agent's problem is given by

$$V(k,\epsilon;\psi) = u(c) + \beta E[V(k'\epsilon';\psi')] \tag{1}$$

s.t.
$$c + k' \le (1 + r(K, L) - \delta)k + w(K, L)\epsilon$$
 (2)

$$k' \ge \underline{k} \tag{3}$$

$$\epsilon \sim \mathsf{Markov}\,P(\epsilon'|\epsilon)$$
 (4)

$$\psi' = \Psi(\psi) \tag{5}$$

$$c \ge 0, k \ge 0, k_0 \text{ given} \tag{6}$$

- $ightharpoonup \epsilon$ is a markov process that yields hours worked.
- \blacktriangleright Ψ is an unspecified evolution of the aggregate state (k, ϵ) .
- Prices are determined from the firm's problem

Prices - The Firm's Problem

- How we handle prices determines the difficulty of this problem.
- ▶ In this economy, a single firm produces using labor (hours) and capital.

$$\Pi = \max_{K,L} F(K,L) - wL - rK \tag{7}$$

▶ This yields standard competitive prices for the rental rates.

Stationary Recursive Competitive Equilibrium

- ▶ A stationary RCE is given by pricing functions r, w, a worker value function $V(k, \epsilon; \psi)$, worker decision rules k', c, a type-distribution $\psi(k, \epsilon)$, and aggregates K and L that satisfy
 - k' and c are the optimal solutions to the worker's problem given prices.
 - 2. Prices are formed competitively from the firm's problem.
 - 3. Consistency between aggregate evolution and individual decision rules: ψ is the stationary distribution implied by worker decision rules.
 - 4. Aggregates are consistent with individual policy rules: $K=\int k d\psi, \ L=\int \epsilon d\psi$

Calibration

- ► Functions:
 - $b Utility: u(c) = \frac{c^{1-\sigma}}{1-\sigma}$
 - Production: $F(K, L) = K^{\alpha} L^{1-\alpha}$
- ▶ Borrowing constraint: $\underline{k} = 0$
- $\sim \alpha = 0.36.$

Solving the Model: Market Clearing

► In equilibrium

$$K = \sum_{k} \sum_{\epsilon} k_{s}(k, \epsilon) \psi(k, \epsilon)$$
 (8)

- where k_s is the supply of savings.
- What must the equilibrium prices satisfy?

$$r = F_K(K_D, L) \tag{9}$$

$$K_D(r) = K_S(r) \tag{10}$$

- ▶ Fixing K_D or r yields the other variable.
- ► Thus, one approach is to "guess" the equilibrium and iterate until we guess correctly.

A Solution Technique: The Shooting Algorithm

- ▶ Guess r. Yields K_D and w from $r = F_K(K_D, L)$ and $w = F_L$.
- Now, given this price, calculate the *individual* savings rule.
- Simulate the economy far enough into future to reach a steady-state distribution of capital.
- ▶ Check and see if $K_D = K_S$.
- ▶ If not, adjust guess of interest rate according to following:

$$r' = r + \lambda (K_D - K_S) \tag{11}$$

 \blacktriangleright where $\lambda < 1$

A Solution Technique: The Shooting Algorithm

Adjusting interest rates:

$$r' = r + \lambda (K_D - K_S) \tag{12}$$

- ▶ If $K_S > K_D$: too much savings.
- Interest rate must fall to be in equilibrium.

First iteration

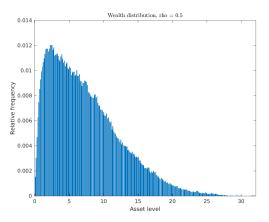
- ► Initial guess:
 - $r_0 = 0.03093$
- ► Three aggregates:
 - 1. K = 8.8342
 - 2. L = 0.8582
 - 3. $\rightarrow r = F_K = 0.0204$
- $r r_0 < errtol? 0.0309 0.0204$ too large.
- ▶ Algorithm: fzero \rightarrow pick local r_1 and try again.

Second iteration

- ► Initial guess:
 - $r_0 = 0.0308$
- ► Three aggregates:
 - 1. K = 1.4531
 - 2. L = 0.9351
 - 3. $\rightarrow r = F_K = 0.1985$
- $r r_0 < errtol? 0.0309 0.1935$ too large.
- Very sensitive to r₀!

Converged Wealth Dist.

► Final wealth distribution after convergence:



Another Solution technique: Root-Finding and Excess Demand

- Functionally, this is the same as what we just did.
- \triangleright Suppose we solve household decision rules k, and r.
- ▶ Then, the excess demand function is

$$\Delta(r) = K_D(r) - K_S(r) \tag{13}$$

- Where we have solved K_D for many values of r and have an expression for $K_S(r)$ (static firm optimization).
- ▶ Do one-dimensional root finding, i.e., find r^* such that

$$0 = \Delta(r^*) = K_D(r^*) - K_S(r^*) \tag{14}$$

Aggregate Uncertainty

In a production economy, the agent's problem is given by

$$V(k,\epsilon;z,\psi) = u(c) + \beta E[V(k',\epsilon';z',\psi')]$$
 (15)

s.t.
$$c + k' \le (1 + r(z, K, L) - \delta)k + w(z, K, L)\epsilon$$
 (16)

$$k' \ge \underline{k} \tag{17}$$

$$z' = \mathsf{Markov}P(z'|z)$$
 (18)

$$\epsilon \sim \mathsf{Markov}P(\epsilon'|\epsilon,z')$$
 (19)

$$\psi' = \Psi(\psi, z, z') \tag{20}$$

$$c \ge 0, k \ge 0, k_0 \text{ given}, z_0 \text{ given}$$
 (21)

- lacktriangle ϵ is a markov process for employment $\epsilon \in \{0,1\}$
- $ightharpoonup \Psi$ is an unspecified evolution of the aggregate state.
- z also evolves as a markov process.
- Prices are determined from the firm's problem.

Prices - The Firm's Problem

- How we handle prices determines the difficulty of this problem.
- ▶ In this economy, a single firm produces using labor (hours) and capital.

$$\Pi = \max_{K,L} zF(K,L) - wL - rK \tag{22}$$

▶ This yields standard competitive prices for the rental rates.

Laws of Motion

- The future aggregate state enters the probability of employment.
- ► This means that it impacts **all** of the laws of motion:

$$z' = \mathsf{Markov} P(z'|z) \tag{23}$$

$$\epsilon \sim \mathsf{Markov} P(\epsilon'|\epsilon, z') \tag{24}$$

$$k' \leq (1 + r(z, K, L) - \delta)k + w(z, K, L)\epsilon - c \tag{25}$$

$$\psi' = \Psi(\psi, z, z') \tag{26}$$

Because shocks to z change employment status and prices.

Recursive Competitive Equilibrium

- ▶ An RCE is given by pricing functions r, w, a worker value function $V(k, \epsilon, z; \psi)$, worker decision rules k', c, a type-distribution $\psi(k, \epsilon)$, and aggregates K and L that satisfy
 - 1. k' and c are the optimal solutions to the worker's problem given prices.
 - 2. Prices are formed competitively from the firm's problem.
 - 3. Consistency between aggregate evolution and individual decision rules: ψ is the distribution implied by worker decision rules given the aggregate state.
 - 4. Aggregates are consistent with individual policy rules: $K = \int k d\psi$, $L = \int \epsilon d\psi$

Type Distribution

- ► The type distribution is a problem.
- ► Each policy function and transition depends on the type distribution.
- But the type distribution is time-varying in response to aggregate shocks.
- ► Alternative: use a smaller number of moments that can be calculated quickly to characterize the type distribution.
- Like a "sufficient statistic" for the type distribution.

Krusell and Smith (1998)

- ightharpoonup Specify moments from the type distribution γ that approximate the type distribution.
- ▶ Then: $\gamma' = \Gamma(\gamma, z, z')$.
- \blacktriangleright Household predicts prices using Γ instead of Ψ
- As long as this law of motion is reasonably accurate, this approximation will work.
- Krusell and Smith:
 - \triangleright Pick first *j* moments of distribution over k, ϵ
 - i.e., mean, standard deviation,...
 - Use this as the law of motion.
- Use means: $ln(K') = \phi_0^z + \phi_1^z ln(K)$

Approximate problem

In a production economy, the agent's problem is given by

$$V(k, \epsilon; z, K) = u(c) + \beta E[V(k', \epsilon'; z', K')]$$
s.t. $c + k' \le (1 + r(z, K, L) - \delta)k + w(z, K, L)\epsilon$ (28)
$$k' \ge \underline{k}$$

$$z' = \operatorname{Markov}P(z'|z)$$

$$\epsilon \sim \operatorname{Markov}P(\epsilon'|\epsilon, z')$$

$$ln(K') = \phi_0^z + \phi_1^z ln(K)$$

$$c \ge 0, k \ge 0, k_0 \text{ given}, z_0 \text{ given}$$
(33)

- ▶ LLN \rightarrow N known given z.
- Now: need aggregate capital and ϕ_0^z , ϕ_1^z .
- Note: ϕ_0^z , ϕ_1^z for each z

KS Solution Technique

Algorithm:

- 1. Specify an initial forecasting function for K: $In(K') = \phi_0^z + \phi_1^z In(K)$. Pick initial values for ϕ_0^z, ϕ_1^z
- 2. Tell household that the evolution of the aggregate state is given by $\ln(K') = \phi_0^z + \phi_1^z \ln(K)$. i.e., replace the previous constraint.
- Use value function iteration on this problem to solve for optimal policy rules.
- Simulate model forward to obtain K, z series. Drop first X number of observations.
- 5. Use OLS on K, z series to see if forecasting was correct $|[\phi_0^z, \phi_1^z]' \phi_0^{z'}, \phi_{1'}^z]| < errtol$
- 6. If not, update ϕ_0^z , ϕ_1^z between initial and estimates.
- Another way to think about this: You estimated the slope and intercept of K' on some series $\{K_j, z_j\}_{j=1}^{j=t}$ and you are assessing its out of sample fit on $\{K_j, z_j\}_{j=t+1}^T$

KS Solution Technique

- ► Why does mean work?
- Linearity:

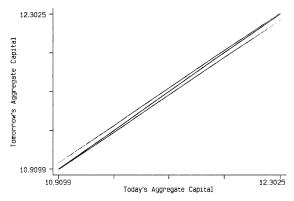


Fig. 1.—Tomorrow's vs. today's aggregate capital (benchmark model)

What do they find?

• With β heterogeneity, can hit wealth dist.

TABLE 1
DISTRIBUTION OF WEALTH: MODELS AND DATA

Model	PE		TAGE C	F WEA	LTH	Fraction with Wealth < 0	GINI Coefficient
	1%	5%	10%	20%	30%		
Benchmark model	3	11	19	35	46	0	.25
Stochastic-β model	24	55	73	88	92	11	.82
Data	30	51	64	79	88	11	.79

▶ What is heterogeneity in β a reduced-form for?

Business Cycle Effects

- ▶ This model is built to handle stochastic shocks.
- ▶ How do heterogeneous agents respond over a business cycle?

TABLE 2 Aggregate Time Series

Model	$Mean(k_i)$	$Corr(c_i, y_i)$	Standard Deviation (i_l)	$Corr(y_b \ y_{t-4})$
Benchmark:				
Complete markets	11.54	.691	.031	.486
Incomplete markets	11.61	.701	.030	.481
$\sigma = 5$:				
Complete markets	11.55	.725	.034	.551
Incomplete markets	12.32	.741	.033	.524
Real business cycle:				
Complete markets	11.56	.639	.027	.342
Incomplete markets	11.58	.669	.027	.339
Stochastic-β:				
Incomplete markets	11.78	.825	.027	.459

Conclusion

- ► Today: solving heterogeneous agent models.
- Code to do this on the cluster.
- ▶ Next time (11/16): Huggett, Ventura, and Yaron (2011)
- Start your model projects!