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Announcements

» Today: Start discussing solution techniques.
» Focus on linearization & its problems.

» New homework on my website.



Motivation

> Models are hard to solve globally.

> Requires a lot of grid points, entails curse of dimensionality,
takes a long time.

> A linearized system, by contrast, is easy to solve.
» Need to pick a place to linearize around.
» Pick the steady state.

» Underlying assumption: economy will stay close to the
steady-state.



Empirical Motivation

» Standard RBC: all fluctuations of hours worked on the
intensive margin, i.e. average number of hours worked.

» Data: little fluctuation in average hours worked; lots of
fluctuation in whether or not people are working (extensive
margin).

» Standard RBC: missed badly on labor fluctuations (Frisch
Elasticity, i.e. response of labor to change in wage too low).

» Solution: Modify model to have extensive margin with high
Frisch Elasticity.

» Now: households pick the probability of working, but have to
work a set number of hours.

» This is a nonconvexity in that it forces individuals to work
either 0 or h hours.



Hansen (1985)

» Neoclassical growth model with labor-leisure lottery.

» A social planner maximize the following:
E(Z B [In(Ct) — yHi] (1)
t=0

» Subject to the following constraints:
Ye = AK{ (0" He)' ' (2

In(At) = (1 — p)In(A) + pin(Ar_1) + €, € ~ N(0,52) (3)
» The goods market clears and capital evolves in a
predetermined fashion.

> Here, we assume that per capita labor productivity grows at
rate n.



Equilibrium

» First step: detrend appropriate variables by per capita growth

to get stationarity: i.e. y; = Yi/n'.

> The system of equations that characterize the equilibrium are:

Ye = ackf hy

In(a;) = (1 — p)In(A) + pIn(a;—1) + €+

Y= Ct+ it
nkt-‘rl = (1 — 5)kt + it
» Combine FOC|[c] and FOC[h]:

ycehy = (1 - 0))/1‘

» Euler Equation:

Ui 1 Yi+1
— = BE|]——(0 +1-6
o =PRI (0G) +1-0)

(4)
(5)
(6)
(7)

(8)



Solving for the Steady-State

In(a*) = (1 — p)In(A) + pIn(a*)
= In(a*) = In(A) (10)
Euler Equation:

1= BRI 0 +1-0)]

n_ v

» 5 =0 +1-9

P S (11)
T 116"



Solving for the Steady-State

» Use the previous to solve for investment
nk* =(1—90)k* +i*

= (n—1+0)k* =i*

O(n—1+ 6))y*

=i = i
A-140

» FOC|c] and FOCIh]:
yc*h* = (1-0)y"

O(n—1+9)
(n—149)

== - P

Ny h = (1-0)y"

(12)

(13)



Solving for the Steady-State

» Finally, solve for output.
y* _ a*k*eh*l—e

0 (n—1+0)

v =g IO
e . 0 1-0,  0(n—1+06) 11

P = e O
v =g - Y
(14)

» All variables now a function of parameters.



Steady-States
> In steady-state y; = yri1 = y*.
In(a*) = In(A)

k*_(%—1+5)y*
= Oy
el (Hg?_—lljj))ly*
h* (1;0)[1—(0%7__11:?)]_1
y' = a’”‘lg(g = +5)1_99[(1;9)[1 B (0(277__11;?

» These steady-states will be used for calibration/solving.

(15)

(16)

(17)

(18)

(19)

)]71]179

(20)



Overview

v

Broadly, two methods of solving models:

1. Local linear methods.
2. Global non-linear methods.

v

Tradeoff: accuracy (global non-linear) for speed and simplicity
(local linear).

v

My preference: global methods (linear methods involve
linearizing Euler Equation, distorting choices over risk).

v

Here: Discuss log linearization and Blanchard and Kahn's
Method.



Local Linear Methods

> Log-linearize the system around the steady-state, then
proceed.
» First have to solve the system for stability:

1. Klein's Method (2000): Used for singular matrices.

2. Sim's Method (2001): Used when it is unclear which variables
are states and controls.

3. Blanchard and Kahn's Method (1980): First solution method
for rational expectations models.

» Here, we will use Blanchard and Kahn's Method.



Log-Linearizing the System

We first wish to rewrite X = In(x;) — In(x) in two convenient ways:

)

Then, the first-order Taylor Approximation to this equation yields:

)?t = In(%

C o OX
X = X (x) + a—j:(x)(xt - Xx)

1
= X = In(1) + ;(xt - Xx)

We can also rewrite the equation for X; as

xp = xe*t (21)



Log-Linearizing the System

From equilibrium conditions:

Ye = ack{h; ™’ (22)
= In(y:) = In(a¢) + OIn(ke) + (1 — 0)In(hy)
In(y) = In(a) + 0In(k) + (1 — 0)In(h)

= ¥t = In(y:) — In(y) = In(a:) + 0OIn(k:) + (1 — 0)In(h;)
— (In(a) + @In(k) + (1 — 6)In(h))



Log-Linearizing the System

In(as) = (1 — p)In(A) + pIn(as—1) + €;
In(a) = (1 — p)In(A) + pln(a)

= 51_— = Pét—l + €t (24)



Log-Linearizing the System

Ye=Ct+ it
- 1 Xt
:>th /n(l)-'—;(Xt—X) = (;—‘—1)

= y(Fe+1)=c(&+1)+i(it +1)



Log-Linearizing the System

» Let ¥+ = In(y:) — In(y*). Then, using Taylor Series
approximations, the system characterizing the equilibrium

becomes: . B
Ve = 3 + Oke + (1 — 0)hy (25)
ar = par—1 + €t (26)
(%—1+6))"/t = [%—1+5—9(n—1+5)]et+e(n—1+5)7t (27)
nker1 = (1= 6)ke + (n— 1+ 6)ie (28)
Je =+ (29)
0= e+ EI(G 14+ 0)(Fers — kera) = Z2ea] - (30)

B



Log-Linearizing the System

» We can now write the system as:
Vi = Wl + W33, (ME)

VaEr(§ev1) = Vs + Vole + V73; (TE)
» (; are static predetermined and nonpredetermined variables,
[72, 7r, he]'.
> &; are dynamic predetermined and nonpredetermined variables,
[/~<t, &
> 3; is the technology process.
» Why is ¢; among the dynamic variables?



Matrices

FUAU}

Slooo



Solving the Model - Blanchard and Kahn (1980)

A
c

g(c)=0

]

» Select & st the system isn't explosive (optimal control!).



Solving the Model - Cont.

» Solve systems (TE and ME) so that £;41 is only a function on
gt and 51-:
WViGr = Wa&t + V33, (31)

V4Er(§e41) = Vs + Vel + V73; (32)
= e = W Wake + W3]

» Plug into transition equation:
WaEe(Eea1) = Wsbe + WeW; HWake + Vs3] + W7d

= Er(€e1) = Y Vs + WU W06+ W, W7+ WU T35,
(33)
» Desired result!



Solving the Model - Cont.

» Having solved systems on previous slide so that &;41 is only a
function on &; and a;:

/~<t+1 ] -1 |:l;t:| ~
- =N"JIN||+E 34
[Et(CH—l) Ct 2 ( )

» A~1JA is the Jordan Decomposition.
» Subsume A into the model variables, denoted by hats:

& = Noke + Moo (35)



Solving the Model - Cont.

» Subsume A into the model variables, denoted by hats.
e R
N = N + Da 36
I:Et(ct+1) 0 J2 Ct t ( )
Et(ﬁtH) = chA:t + Dzét (37)

v

J» > 1 — bad choice of ¢; and this explodes.

v

Solution: pick ¢; so that it isn't a function of ¢;_1!

v

Rearranging:

& = Jy LEr(Ce41) — Iy T Do3y (38)



Solving the Model - Cont.

> lterating on previous equation:
o1 = Jy "Ee(Cri2) — Jo 1 DoBry1 (39)
= & = Jy LEr(Jy TEe(Cer2) — Sy 1 DoBei1) — Jy P Do3y
= & = Jy2Er(Ce2)) — Jy 2Dop3r — Jy P Doy (40)

» Impose transversality condition (i.e. E(¢:4;)) = 0 for large
enough i):

=e=—Y & "Dypa, (41)
i=0



Solving the Model - Cont.

> lterating on (33):

& = Nake + Moo,

= Npo& = —Apoke — ZJ YDy,

» Solving this yields:

17 D, ..
= ¢ = —AtMoke + (1 /ha2)( = e (42)

» The system will now be saddle-path stable.



Next Time

» Calibration and RBC extensions.

» See my website for homework.
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