Macro II

Professor Griffy

UAlbany

Spring 2021

Announcements

- Today: Start discussing solution techniques.
- Focus on linearization \& its problems.
- New homework on my website.

Motivation

- Models are hard to solve globally.
- Requires a lot of grid points, entails curse of dimensionality, takes a long time.
- A linearized system, by contrast, is easy to solve.
- Need to pick a place to linearize around.
- Pick the steady state.
- Underlying assumption: economy will stay close to the steady-state.

Empirical Motivation

- Standard RBC: all fluctuations of hours worked on the intensive margin, i.e. average number of hours worked.
- Data: little fluctuation in average hours worked; lots of fluctuation in whether or not people are working (extensive margin).
- Standard RBC: missed badly on labor fluctuations (Frisch Elasticity, i.e. response of labor to change in wage too low).
- Solution: Modify model to have extensive margin with high Frisch Elasticity.
- Now: households pick the probability of working, but have to work a set number of hours.
- This is a nonconvexity in that it forces individuals to work either 0 or h hours.

Hansen (1985)

- Neoclassical growth model with labor-leisure lottery.
- A social planner maximize the following:

$$
\begin{equation*}
E\left(\sum_{t=0}^{\infty} \beta^{t}\left[\ln \left(C_{t}\right)-\gamma H_{t}\right]\right. \tag{1}
\end{equation*}
$$

- Subject to the following constraints:

$$
\begin{gather*}
Y_{t}=A_{t} K_{t}^{\theta}\left(\eta^{t} H_{t}\right)^{1-\theta} \tag{2}\\
\ln \left(A_{t}\right)=(1-\rho) \ln (A)+\rho \ln \left(A_{t-1}\right)+\epsilon_{t}, \quad \epsilon_{t} \sim N\left(0, \sigma_{\epsilon}^{2}\right) \tag{3}
\end{gather*}
$$

- The goods market clears and capital evolves in a predetermined fashion.
- Here, we assume that per capita labor productivity grows at rate η.

Equilibrium

- First step: detrend appropriate variables by per capita growth to get stationarity: i.e. $y_{t}=Y_{t} / \eta^{t}$.
- The system of equations that characterize the equilibrium are:

$$
\begin{gather*}
y_{t}=a_{t} k_{t}^{\theta} h_{t}^{1-\theta} \tag{4}\\
\ln \left(a_{t}\right)=(1-\rho) \ln (A)+\rho \ln \left(a_{t-1}\right)+\epsilon_{t} \tag{5}\\
y_{t}=c_{t}+i_{t} \tag{6}\\
\eta k_{t+1}=(1-\delta) k_{t}+i_{t} \tag{7}
\end{gather*}
$$

- Combine FOC[c] and FOC[h]:

$$
\begin{equation*}
\gamma c_{t} h_{t}=(1-\theta) y_{t} \tag{8}
\end{equation*}
$$

- Euler Equation:

$$
\begin{equation*}
\frac{\eta}{c_{t}}=\beta E_{t}\left[\frac{1}{c_{t+1}}\left(\theta\left(\frac{y_{t+1}}{k_{t+1}}\right)+1-\delta\right)\right] \tag{9}
\end{equation*}
$$

Solving for the Steady-State

$$
\begin{align*}
\ln \left(a^{*}\right) & =(1-\rho) \ln (A)+\rho \ln \left(a^{*}\right) \\
& \Rightarrow \ln \left(a^{*}\right)=\ln (A) \tag{10}
\end{align*}
$$

Euler Equation:

$$
\begin{align*}
\frac{\eta}{c^{*}} & =\beta E_{t}\left[\frac{1}{c^{*}}\left(\theta\left(\frac{y^{*}}{k^{*}}\right)+1-\delta\right)\right] \\
& \Rightarrow \frac{\eta}{\beta}=\theta \frac{y^{*}}{k^{*}}+1-\delta \\
& \Rightarrow k^{*}=\left(\frac{\theta}{\frac{\eta}{\beta}-1+\delta}\right) y^{*} \tag{11}
\end{align*}
$$

Solving for the Steady-State

- Use the previous to solve for investment

$$
\begin{align*}
& \eta k^{*}=(1-\delta) k^{*}+i^{*} \\
\Rightarrow & (\eta-1+\delta) k^{*}=i^{*} \\
\Rightarrow & i^{*}=\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right) y^{*} \tag{12}
\end{align*}
$$

- $\operatorname{FOC}[\mathrm{c}]$ and $\mathrm{FOC}[\mathrm{h}]$:

$$
\begin{gather*}
\gamma c^{*} h^{*}=(1-\theta) y^{*} \\
\Rightarrow \gamma\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right] y^{*} h^{*}=(1-\theta) y^{*} \\
\Rightarrow h^{*}=\left(\frac{1-\theta}{\gamma}\right)\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right]^{-1} \tag{13}
\end{gather*}
$$

Solving for the Steady-State

- Finally, solve for output.

$$
\begin{gather*}
y^{*}=a^{*} k^{* \theta} h^{* 1-\theta} \\
y^{*}=a^{*}\left(\left(\frac{\theta}{\frac{\eta}{\beta}-1+\delta}\right) y^{*}\right)^{\theta}\left[\left(\frac{1-\theta}{\gamma}\right)\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right]^{-1}\right]^{1-\theta} \\
y^{* 1-\theta}=a^{*}\left(\frac{\theta}{\frac{\eta}{\beta}-1+\delta}\right)^{\theta}\left[\left(\frac{1-\theta}{\gamma}\right)\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right]^{-1}\right]^{1-\theta} \\
y^{*}=a^{* \frac{1}{1-\theta}}\left(\frac{\theta}{\frac{\eta}{\beta}-1+\delta}\right)^{\frac{\theta}{1-\theta}}\left[\left(\frac{1-\theta}{\gamma}\right)\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right]^{-1}\right]^{1-\theta} \tag{14}
\end{gather*}
$$

- All variables now a function of parameters.

Steady-States

- In steady-state $y_{t}=y_{t+1}=y^{*}$.

$$
\begin{gather*}
\ln \left(a^{*}\right)=\ln (A) \\
k^{*}=\left(\frac{\theta}{\frac{\eta}{\beta}-1+\delta}\right) y^{*} \\
i^{*}=\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right) y^{*} \\
c^{*}=\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right] y^{*} \\
h^{*}=\left(\frac{1-\theta}{\gamma}\right)\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right]^{-1} \\
y^{*}=a^{\frac{1}{1-\theta}}\left(\frac{\theta}{\frac{\eta}{\beta}-1+\delta}\right)^{\frac{\theta}{1-\theta}}\left[\left(\frac{1-\theta}{\gamma}\right)\left[1-\left(\frac{\theta(\eta-1+\delta)}{\frac{\eta}{\beta}-1+\delta}\right)\right]^{-1}\right]^{1-\theta} \tag{20}
\end{gather*}
$$

- These steady-states will be used for calibration/solving.

Overview

- Broadly, two methods of solving models:

1. Local linear methods.
2. Global non-linear methods.

- Tradeoff: accuracy (global non-linear) for speed and simplicity (local linear).
- My preference: global methods (linear methods involve linearizing Euler Equation, distorting choices over risk).
- Here: Discuss log linearization and Blanchard and Kahn's Method.

Local Linear Methods

- Log-linearize the system around the steady-state, then proceed.
- First have to solve the system for stability:

1. Klein's Method (2000): Used for singular matrices.
2. Sim's Method (2001): Used when it is unclear which variables are states and controls.
3. Blanchard and Kahn's Method (1980): First solution method for rational expectations models.

- Here, we will use Blanchard and Kahn's Method.

Log-Linearizing the System

We first wish to rewrite $\tilde{x}_{t}=\ln \left(x_{t}\right)-\ln (x)$ in two convenient ways:

$$
\tilde{x}_{t}=\ln \left(\frac{x_{t}}{x}\right)
$$

Then, the first-order Taylor Approximation to this equation yields:

$$
\begin{aligned}
\tilde{x}_{t} & \cong \tilde{x}_{t}(x)+\frac{\partial \tilde{x}_{t}}{\partial x_{t}}(x)\left(x_{t}-x\right) \\
& \Rightarrow \tilde{x}_{t} \cong \ln (1)+\frac{1}{x}\left(x_{t}-x\right)
\end{aligned}
$$

We can also rewrite the equation for \tilde{x}_{t} as

$$
\begin{equation*}
x_{t}=x e^{\tilde{x}_{t}} \tag{21}
\end{equation*}
$$

Log-Linearizing the System

From equilibrium conditions:

$$
\begin{gather*}
y_{t}=a_{t} k_{t}^{\theta} h_{t}^{1-\theta} \tag{22}\\
\Rightarrow \ln \left(y_{t}\right)=\ln \left(a_{t}\right)+\theta \ln \left(k_{t}\right)+(1-\theta) \ln \left(h_{t}\right) \\
\ln (y)=\ln (a)+\theta \ln (k)+(1-\theta) \ln (h) \\
\Rightarrow \tilde{y}_{t}=\ln \left(y_{t}\right)-\ln (y)=\ln \left(a_{t}\right) \quad+\quad \theta \ln \left(k_{t}\right)+(1-\theta) \ln \left(h_{t}\right) \\
- \\
\left.\Rightarrow \tilde{y}_{t}=\tilde{a}_{t}+\theta(a)+\theta \ln (k)+(1-\theta) \ln (h)\right) \tag{23}\\
t(1-\theta) \tilde{h}_{t}
\end{gather*}
$$

Log-Linearizing the System

$$
\begin{gather*}
\ln \left(a_{t}\right)=(1-\rho) \ln (A)+\rho \ln \left(a_{t-1}\right)+\epsilon_{t} \\
\ln (a)=(1-\rho) \ln (A)+\rho \ln (a) \\
\quad \Rightarrow \tilde{a}_{t}=\rho \tilde{a}_{t-1}+\epsilon_{t} \tag{24}
\end{gather*}
$$

Log-Linearizing the System

$$
\begin{gathered}
y_{t}=c_{t}+i_{t} \\
\Rightarrow \tilde{x}_{t} \approx \ln (1)+\frac{1}{x}\left(x_{t}-x\right)=\left(\frac{x_{t}}{x}+1\right) \\
\Rightarrow y\left(\tilde{y}_{t}+1\right)=c\left(\tilde{c}_{t}+1\right)+i\left(\tilde{i}_{t}+1\right) \\
\tilde{y}_{t}=\frac{c}{y} \tilde{c}_{t}+\frac{i}{y} \tilde{i}_{t}
\end{gathered}
$$

Log-Linearizing the System

- Let $\tilde{y}_{t}=\ln \left(y_{t}\right)-\ln \left(y^{*}\right)$. Then, using Taylor Series approximations, the system characterizing the equilibrium becomes:

$$
\begin{gather*}
\tilde{y}_{t}=\tilde{a}_{t}+\theta \tilde{k}_{t}+(1-\theta) \tilde{h}_{t} \tag{25}\\
\tilde{a}_{t}=\rho \tilde{a}_{t-1}+\epsilon_{t} \tag{26}\\
\left(\frac{\eta}{\beta}-1+\delta\right) \tilde{y}_{t}=\left[\frac{\eta}{\beta}-1+\delta-\theta(\eta-1+\delta)\right] \tilde{c}_{t}+\theta(\eta-1+\delta) \tilde{i}_{t} \tag{27}\\
\eta \tilde{k}_{t+1}=(1-\delta) \tilde{k}_{t}+(\eta-1+\delta) \tilde{i}_{t} \tag{28}\\
\tilde{y}_{t}=\tilde{c}_{t}+\tilde{h}_{t} \tag{29}\\
0=\frac{\eta}{\beta} \tilde{c}_{t}+E\left[\left(\frac{\eta}{\beta}-1+\delta\right)\left(\tilde{y}_{t+1}-\tilde{k}_{t+1}\right)-\frac{\eta}{\beta} \tilde{c}_{t+1}\right] \tag{30}
\end{gather*}
$$

Log-Linearizing the System

- We can now write the system as:

$$
\begin{gather*}
\Psi_{1} \zeta_{t}=\Psi_{2} \xi_{t}+\Psi_{3} \tilde{a}_{t} \tag{ME}\\
\Psi_{4} E_{t}\left(\xi_{t+1}\right)=\Psi_{5} \xi_{t}+\Psi_{6} \zeta_{t}+\Psi_{7} \tilde{a}_{t} \tag{TE}
\end{gather*}
$$

- ζ_{t} are static predetermined and nonpredetermined variables, $\left[\tilde{y}_{t}, \tilde{i}_{t}, \tilde{h}_{t}\right]^{\prime}$.
- ξ_{t} are dynamic predetermined and nonpredetermined variables, $\left[\tilde{k}_{t}, \tilde{c}_{t}\right]^{\prime}$.
- \tilde{a}_{t} is the technology process.
- Why is \tilde{c}_{t} among the dynamic variables?

Matrices

$$
\kappa=\eta / \beta-1+\delta
$$

$$
\lambda=\eta-1+\delta
$$

$$
\zeta_{t}=\left[\begin{array}{lll}
\tilde{y}_{t} & \tilde{i}_{t} & \tilde{h}_{t}
\end{array}\right]^{\prime}, \quad \bar{\zeta}_{t}=\left[\begin{array}{ll}
\bar{k}_{t} & \tilde{c}_{t}
\end{array}\right]^{\prime}
$$

$$
\Psi_{1}=\left[\begin{array}{ccc}
1 & 0 & \theta-1 \\
\kappa & -\theta \lambda & 0 \\
1 & 0 & 1
\end{array}\right], \quad \Psi_{2}=\left[\begin{array}{cc}
\theta & 0 \\
0 & \kappa-\theta \lambda \\
0 & 1
\end{array}\right], \quad \Psi_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
\Psi_{4}=\left[\begin{array}{cc}
\eta & 0 \\
\kappa & \eta / \beta
\end{array}\right], \quad \Psi_{5}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-\kappa & 0 & 0
\end{array}\right], \quad \Psi_{6}=\left[\begin{array}{cc}
1-\delta & 0 \\
0 \eta / \beta &], \quad \Psi_{7}=\left[\begin{array}{lll}
0 & \lambda & 0 \\
0 & 0 & 0
\end{array}\right], ~
\end{array}\right.
$$

Solving the Model - Blanchard and Kahn (1980)

- Select \tilde{c}_{0} st the system isn't explosive (optimal control!).

Solving the Model - Cont.

- Solve systems (TE and ME) so that ξ_{t+1} is only a function on ξ_{t} and \tilde{a}_{t} :

$$
\begin{gather*}
\Psi_{1} \zeta_{t}=\Psi_{2} \xi_{t}+\Psi_{3} \tilde{a}_{t} \tag{31}\\
\Psi_{4} E_{t}\left(\xi_{t+1}\right)=\Psi_{5} \xi_{t}+\Psi_{6} \zeta_{t}+\Psi_{7} \tilde{a}_{t} \tag{32}\\
\Rightarrow \zeta_{t}=\Psi_{1}^{-1}\left[\Psi_{2} \xi_{t}+\Psi_{3} \tilde{a}_{t}\right]
\end{gather*}
$$

- Plug into transition equation:

$$
\begin{gather*}
\Psi_{4} E_{t}\left(\xi_{t+1}\right)=\Psi_{5} \xi_{t}+\Psi_{6} \Psi_{1}^{-1}\left[\Psi_{2} \xi_{t}+\Psi_{3} \tilde{a}_{t}\right]+\Psi_{7} \tilde{a}_{t} \\
\Rightarrow E_{t}\left(\xi_{t+1}\right)=\Psi_{4}^{-1}\left[\Psi_{5}+\Psi_{6} \Psi_{1}^{-1} \Psi_{2}\right] \xi_{t}+\Psi_{4}^{-1}\left[\Psi_{7}+\Psi_{6} \Psi_{1}^{-1} \Psi_{3}\right] \tilde{a}_{t} \tag{33}
\end{gather*}
$$

- Desired result!

Solving the Model - Cont.

- Having solved systems on previous slide so that ξ_{t+1} is only a function on ξ_{t} and \tilde{a}_{t} :

$$
\left[\begin{array}{c}
\tilde{k}_{t+1} \tag{34}\\
E_{t}\left(\tilde{c}_{t+1}\right)
\end{array}\right]=\Lambda^{-1} J \Lambda\left[\begin{array}{c}
\tilde{k}_{t} \\
\tilde{c}_{t}
\end{array}\right]+E \tilde{a}_{t}
$$

- $\Lambda^{-1} \mathrm{~J} \wedge$ is the Jordan Decomposition.
- Subsume Λ into the model variables, denoted by hats:

$$
\begin{equation*}
\hat{c}_{t}=\Lambda_{12} \tilde{k}_{t}+\Lambda_{22} \tilde{c}_{t} \tag{35}
\end{equation*}
$$

Solving the Model - Cont.

- Subsume Λ into the model variables, denoted by hats.

$$
\begin{gather*}
{\left[\begin{array}{c}
\hat{k}_{t+1} \\
E_{t}\left(\hat{c}_{t+1}\right)
\end{array}\right]=\left[\begin{array}{cc}
J_{1} & 0 \\
0 & J_{2}
\end{array}\right]\left[\begin{array}{l}
\hat{k}_{t} \\
\hat{c}_{t}
\end{array}\right]+D \tilde{a}_{t}} \tag{36}\\
E_{t}\left(\hat{c}_{t+1}\right)=J_{2} \hat{c}_{t}+D_{2} \tilde{a}_{t} \tag{37}
\end{gather*}
$$

- $J_{2}>1 \rightarrow$ bad choice of c_{t} and this explodes.
- Solution: pick c_{t} so that it isn't a function of c_{t-1} !
- Rearranging:

$$
\begin{equation*}
\hat{c}_{t}=J_{2}^{-1} E_{t}\left(\hat{c}_{t+1}\right)-J_{2}^{-1} D_{2} \tilde{a}_{t} \tag{38}
\end{equation*}
$$

Solving the Model - Cont.

- Iterating on previous equation:

$$
\begin{gather*}
\hat{c}_{t+1}=J_{2}^{-1} E_{t}\left(\hat{c}_{t+2}\right)-J_{2}^{-1} D_{2} \tilde{a}_{t+1} \tag{39}\\
\Rightarrow \hat{c}_{t}=J_{2}^{-1} E_{t}\left(J_{2}^{-1} E_{t}\left(\hat{c}_{t+2}\right)-J_{2}^{-1} D_{2} \tilde{a}_{t+1}\right)-J_{2}^{-1} D_{2} \tilde{a}_{t} \\
\left.\Rightarrow \hat{c}_{t}=J_{2}^{-2} E_{t}\left(\hat{c}_{t+2}\right)\right)-J_{2}^{-2} D_{2} \rho \tilde{a}_{t}-J_{2}^{-1} D_{2} \tilde{a}_{t} \tag{40}
\end{gather*}
$$

- Impose transversality condition (i.e. $\left.E_{t}\left(\hat{c}_{t+i}\right)\right)=0$ for large enough i):

$$
\begin{equation*}
\Rightarrow \hat{c}_{t}=-\sum_{i=0}^{\infty} J_{2}^{-(i+1)} D_{2} \rho \tilde{a}_{t} \tag{41}
\end{equation*}
$$

Solving the Model - Cont.

- Iterating on (33):

$$
\begin{gathered}
\hat{c}_{t}=\Lambda_{12} \tilde{k}_{t}+\Lambda_{22} \tilde{c}_{t} \\
\Rightarrow \Lambda_{22} \tilde{c}_{t}=-\Lambda_{12} \tilde{k}_{t}-\sum_{i=0}^{\infty} J_{2}^{-(i+1)} D_{2} \rho \tilde{a}_{t}
\end{gathered}
$$

- Solving this yields:

$$
\begin{equation*}
\Rightarrow c_{t}=-\Lambda_{22}^{-1} \Lambda_{12} \tilde{k}_{t}+\left(1 / \Lambda_{22}\right)\left(\frac{D_{2}}{\rho-J_{2}}\right) \tilde{a}_{t} \tag{42}
\end{equation*}
$$

- The system will now be saddle-path stable.

Next Time

- Calibration and RBC extensions.
- See my website for homework.

