Macro II

Professor Griffy

UAlbany

Spring 2021

Introduction

- Today: New Keynsian Model
- RBC model: nominal variables are neutral.
- New Keynesian model:

1. Nominal rigidities: prices are sticky, i.e. slow to adjust.
2. This leads to a role for stabilization policies.

- Here: Go through basic NK model.

Assumptions

- Simplifying assumption:
- ignore variation in capital or investment.
- Prices are determined by "Calvo (1983) Pricing":
- prices are allowed to change with fixed probability
- Wages are not sticky
- Monetary policy is a choice of the nominal interest rate

Environment

- Three agents:
- Household: Consume, work, save, hold money.
- Final goods producer: takes intermediate goods and produces consumable.
- Intermediate goods producer: Uses capital and tech, sells to final goods producer.
- Preferences and technology:
- Money in the utility function;
- Cobb-Douglas intermeidate production;
- CES aggregator for final good;
- Price rigidities generate market power for intermediate goods producer.

Household's Problem

- Maximize expected utility which depends on a composite consumption good, real money, and leisure

$$
E_{t} \sum_{i=0}^{\infty} \beta^{i}\left[\left(\frac{C_{t+i}^{1-\sigma}}{1-\sigma}\right)+\frac{\gamma}{1-b}\left(\frac{M_{t+i}}{P_{t+i}}\right)^{1-b}-\chi \frac{N_{t+i}^{1+\eta}}{1+\eta}\right]
$$

s.t.

$$
C_{t}+\frac{M_{t}}{P_{t}}+\frac{B_{t}}{P_{t}}=\frac{W_{t}}{P_{t}} N_{t}+\frac{M_{t-1}}{P_{t}}+\frac{\left(1+i_{t-1}\right) B_{t-1}}{P_{t}}+\Pi_{t}
$$

- Upper case: nominal; lower case: real.
- $\frac{M}{P}$: real money balances;
- $\frac{B}{P}$: real bonds;
- Π : firm profits (rigidities yield profits);
- i_{t} : nominal interest rate.

Household optimization problem

- define

$$
\omega_{t}=\frac{\left(m_{t-1}+\left(1+i_{t-1}\right) b_{t-1}\right)}{1+\pi_{t}}=C_{t}+m_{t}+b_{t}-w_{t} N_{t}-\Pi_{t}
$$

- ω : real cash in hand.
- π : rate of inflation.
- substitute b_{t} out by using

$$
b_{t}=\omega_{t}-C_{t}-m_{t}+w_{t} N_{t}+\Pi_{t}
$$

- value function

$$
\begin{align*}
V\left(\omega_{t}\right) & =\max \left[\left(\frac{C_{t}^{1-\sigma}}{1-\sigma}\right)+\frac{\gamma}{1-b}\left(\frac{M_{t}}{P_{t}}\right)^{1-b}-\chi \frac{N_{t}^{1+\eta}}{1+\eta}\right] \\
& +\beta E_{t} V\left(\omega_{t+1}\right) \tag{1}\\
\omega_{t+1} & =\frac{\left(m_{t}+\left(1+i_{t}\right)\left(\omega_{t}-C_{t}-m_{t}+w_{t} N_{t}+\Pi_{t}\right)\right)}{1+\pi_{t+1}}
\end{align*}
$$

- first order conditions

$$
\begin{aligned}
C_{t}^{-\sigma}-\beta E_{t} V_{\omega}\left(\omega_{t+1}\right) \frac{\left(1+i_{t}\right)}{1+\pi_{t+1}} & =0 \\
\gamma m_{t}^{-b}-\beta E_{t} V_{\omega}\left(\omega_{t+1}\right) \frac{i_{t}}{1+\pi_{t+1}} & =0 \\
-\chi N_{t}^{\eta}+\beta E_{t} V_{\omega}\left(\omega_{t+1}\right) w_{t} \frac{1+i_{t}}{1+\pi_{t+1}} & =0
\end{aligned}
$$

- using envelope condition

$$
V_{\omega}\left(\omega_{t}\right)=\beta E_{t} V_{\omega}\left(\omega_{t+1}\right) \frac{1+i_{t}}{1+\pi_{t+1}}=C_{t}^{-\sigma}
$$

- FO conditions become
- Euler:

$$
C_{t}^{-\sigma}=\beta E_{t} C_{t+1}^{-\sigma} \frac{\left(1+i_{t}\right)}{1+\pi_{t+1}}
$$

- Money holdings:

$$
\gamma m_{t}^{-b}=\beta E_{t} C_{t+1}^{-\sigma} \frac{i_{t}}{1+\pi_{t+1}}=C_{t}^{-\sigma} \frac{i_{t}}{1+i_{t}}
$$

- Labor:

$$
\chi N_{t}^{\eta}=\beta E_{t} C_{t+1}^{-\sigma} \frac{w_{t}\left(1+i_{t}\right)}{1+\pi_{t+1}}=C_{t}^{-\sigma} w_{t}
$$

Final Goods Producer

- Composite consumption good is CES

$$
C_{t}=\left[\int_{0}^{1} c_{j t}^{\frac{\theta-1}{\theta}} d j\right]^{\frac{\theta}{\theta-1}} \quad \theta>1
$$

- Choose $c_{j t}$ to minimize the cost of buying C_{t}

$$
\min _{c_{j t}} \int_{0}^{1} p_{j t} c_{j t} d j
$$

subject to

$$
\left[\int_{0}^{1} c_{j t}^{\frac{\theta-1}{\theta}} d j\right]^{\frac{\theta}{\theta-1}} \geq C_{t}
$$

- set up a Lagrangian

$$
L=\int_{0}^{1} p_{j t} c_{j t} d j+\Psi_{t}\left[C_{t}-\left(\int_{0}^{1} c_{j t}^{\frac{\theta-1}{\theta}} d j\right)^{\frac{\theta}{\theta-1}}\right]
$$

- First order condition with respect to $c_{j t}$

$$
\begin{gathered}
p_{j t}-\Psi_{t} \frac{\theta}{\theta-1}\left(\int_{0}^{1} c_{j t}^{\frac{\theta-1}{\theta}} d j\right)^{\frac{\theta}{\theta-1}-1} \frac{\theta-1}{\theta} c_{j t}^{\frac{-1}{\theta}}=0 \\
p_{j t}-\Psi_{t}\left(\int_{0}^{1} c_{j t}^{\frac{\theta-1}{\theta}} d j\right)^{\frac{1}{\theta-1}} c_{j t}^{\frac{-1}{\theta}}=0 \\
p_{j t}-\Psi_{t} C_{t}^{\frac{1}{\theta}} c_{j t}^{\frac{-1}{\theta}}=0 \\
c_{j t}=\left(\frac{p_{j t}}{\Psi_{t}}\right)^{-\theta} C_{t}
\end{gathered}
$$

- Integrate over j to solve for C_{t} and eliminate the multiplier

$$
C_{t}=\left[\int_{0}^{1}\left(\left(\frac{p_{j t}}{\Psi_{t}}\right)^{-\theta} C_{t}\right)^{\frac{\theta-1}{\theta}} d j\right]^{\frac{\theta}{\theta-1}}=\Psi_{t}^{\theta} C_{t}\left[\int_{0}^{1} p_{j t}^{1-\theta} d j\right]^{\frac{\theta}{\theta-1}}
$$

- Solve for Ψ_{t}

$$
\begin{aligned}
1 & =\Psi_{t}\left[\int_{0}^{1} p_{j t}^{1-\theta} d j\right]^{\frac{1}{\theta-1}} \\
\Psi_{t} & =\left[\int_{0}^{1} p_{j t}^{1-\theta} d j\right]^{\frac{1}{1-\theta}} \equiv P_{t}
\end{aligned}
$$

- We have an expression for the aggregate price.

Substituting into demand yields demand as a function of relative price and of composite consumption

$$
c_{j t}=\left(\frac{p_{j t}}{P_{t}}\right)^{-\theta} C_{t}
$$

the price elasticity of demand is $\theta>1$

- Important: downward-sloping demand for each good j \rightarrow intermediate good producers have pricing power.

Firm's problem

- Firms maximize profits subject to constraints
- Constraints
- production function

$$
c_{j t}=Z_{t} N_{j t} \quad E Z_{t}=1
$$

- demand curve

$$
c_{j t}=\left(\frac{p_{j t}}{P_{t}}\right)^{-\theta} C_{t}
$$

- with probability $1-\omega$ Calvo fairy arrives and firm can adjust price.
- choose labor to minimize costs taking the real wage as given

$$
\min w_{t} N_{j t}+\varphi_{t}\left(c_{j t}-Z_{t} N_{j t}\right)
$$

- first order condition

$$
\varphi_{t}=\frac{w_{t}}{Z_{t}}=\frac{w_{t}}{M P N}=\text { real marginal cost. common to all. }
$$

- Next: choose price $\left(p_{j t}\right)$ to maximize real discounted profits

$$
E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i}\left[\frac{p_{j t}}{P_{t+i}} c_{j t+i}-\varphi_{t+i} c_{j t+i}\right]
$$

where discount factor is

$$
\Delta_{i, t+i}=\beta^{i}\left(\frac{C_{t+i}}{C_{t}}\right)^{-\sigma}
$$

- since $c_{j t}$ depends on price through demand, substitute demand curve for $c_{j t}=\left(\frac{p_{j t}}{P_{t}}\right)^{-\theta} C_{t}$

$$
\max _{p_{j t}} E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i}\left[\left(\frac{p_{j t}}{P_{t+i}}\right)^{1-\theta}-\varphi_{t+i}\left(\frac{p_{j t}}{P_{t+i}}\right)^{-\theta}\right] C_{t+i}
$$

- optimal $p_{j t}=p_{t}^{*}$ since firms are identical in all ways except date at which last changed price: FOC with respect to $p_{j t}$

$$
\begin{aligned}
& E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i}\left[(1-\theta)\left(\frac{p_{j t}}{P_{t+i}}\right)^{-\theta}+\varphi_{t+i} \theta\left(\frac{p_{j t}}{P_{t+i}}\right)^{-\theta-1}\right] \frac{C_{t+i}}{P_{t+i}}=0 \\
& E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i}\left[(1-\theta)\left(\frac{p_{t}^{*}}{P_{t+i}}\right)+\varphi_{t+i} \theta\right]\left(\frac{1}{p_{t}^{*}}\right)\left(\frac{p_{t}^{*}}{P_{t+i}}\right)^{-\theta} C_{t+i}=0
\end{aligned}
$$

- first term

$$
\begin{aligned}
& E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i}(1-\theta) \frac{p_{t}^{*}}{P_{t+i}} P_{t+i}^{\theta} C_{t+i} \\
= & \frac{p_{t}^{*}}{P_{t}}(1-\theta) E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i} P_{t} P_{t+i}^{\theta-1} C_{t+i}
\end{aligned}
$$

- second term

$$
E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i} \varphi_{t+i} \theta P_{t+i}^{\theta} C_{t+i}=\theta E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i} \varphi_{t+i} P_{t+i}^{\theta} C_{t+i}
$$

- solve for relative price

$$
\begin{aligned}
\frac{p_{t}^{*}}{P_{t}} & =\left(\frac{\theta}{\theta-1}\right) \frac{E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i} \varphi_{t+i} P_{t+i}^{\theta} C_{t+i}}{E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i} P_{t} P_{t+i}^{\theta-1} C_{t+i}} \\
& =\left(\frac{\theta}{\theta-1}\right) \frac{E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i} \varphi_{t+i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta} C_{t+i}}{E_{t} \sum_{i=0}^{\infty} \omega^{i} \Delta_{i, t+i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta-1} C_{t+i}}
\end{aligned}
$$

where last equality multiplies numerator and denominator by $P_{t}^{-\theta}$

- φ : real marginal cost (of labor).
- use

$$
\begin{gathered}
\Delta_{i, t+i} C_{t+i}=\beta^{i} C_{t+i}^{1-\sigma} C_{t}^{\sigma} \\
\frac{p_{t}^{*}}{P_{t}}=\left(\frac{\theta}{\theta-1}\right) \frac{E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i} \varphi_{t+i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta} C_{t+i}^{1-\sigma}}{E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta-1} C_{t+i}^{1-\sigma}}
\end{gathered}
$$

- Price setting equation for intermediate goods producers.

Flexible price equilibrium

- every firm adjusts every period, so $\omega=0$; lose all but first term

$$
\frac{p_{t}^{*}}{P_{t}}=\left(\frac{\theta}{\theta-1}\right) \varphi_{t}=\mu \varphi_{t}
$$

- implying that price is a markup over marginal costs since $\theta>1$
- since price exceeds marginal cost, output is inefficiently low
- since all firms charge the same price

$$
\varphi=\frac{1}{\mu}
$$

- firms choose labor such that

$$
\frac{Z_{t}}{\mu}=w_{t}
$$

- households choose labor such that

$$
\frac{\chi N_{t}^{\eta}}{C_{t}^{-\sigma}}=w
$$

- in flexible price equilibrium

$$
C_{t}=Y_{t}=Z_{t} N_{t}=\left(\frac{1}{\chi \mu}\right)^{\frac{1}{\sigma+\eta}} Z_{t}^{\frac{1+\eta}{\sigma+\eta}}
$$

- Full employment output is potentially affected by shocks to
- productivity $\left(Z_{t}\right)$
- tastes (χ)
- demand elasticity (markup) (μ)

Thinking about sticky prices

- Return to sticky prices
- recall

$$
\begin{aligned}
& {\left[\int_{0}^{1} p_{j t}^{1-\theta} d j\right]^{\frac{1}{1-\theta}} \equiv P_{t}} \\
& {\left[\int_{0}^{1} p_{j t}^{1-\theta} d j\right]=P_{t}^{1-\theta}}
\end{aligned}
$$

- Aggregate price level

$$
P_{t}^{1-\theta}=(1-\omega)\left(p_{t}^{*}\right)^{1-\theta}+\omega P_{t-1}^{1-\theta}
$$

- $1-\omega$ firms adjust this period and charge the optimal price
- ω do not adjust, and since the adjusting firms are drawn randomly, the price level for non-adjusters is unchanged

New Keynesian Phillips Curve

- Phillips Curve: rel. btwn. inflation (expected) and unemployment (output gap).
- Intermediate price setting:

$$
\frac{p_{t}^{*}}{P_{t}}=\left(\frac{\theta}{\theta-1}\right) \frac{E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i} \varphi_{t+i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta} C_{t+i}^{1-\sigma}}{E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta-1} C_{t+i}^{1-\sigma}}
$$

- Agg. price setting:

$$
P_{t}^{1-\theta}=(1-\omega)\left(p_{t}^{*}\right)^{1-\theta}+\omega P_{t-1}^{1-\theta}
$$

- Let the relative price the firm chooses when he adjusts be

$$
Q_{t}=\frac{p_{t}^{*}}{P_{t}}
$$

- $Q=1$ in steady state and when all firms can adjust every period

Tedious algebra later...

- Vars w/o time subscript are steady-state (C)
- Hats: deveiation from steady-state.
- We can derive the price that would be set by the firm:

$$
\rightarrow \hat{p}_{t}^{*}=\hat{q}_{t}+\hat{p}_{t}=(1-\omega \beta) \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left[E_{t}\left(\hat{\varphi}_{t+i}+\hat{p}_{t+i}\right)\right]
$$

the optimal nominal price equals the expected discounted value of future nominal (ω) marginal costs

- marginal costs: real marginal cost of labor + price.
- can write equation as

$$
\omega \beta E_{t}\left(\hat{q}_{t+1}+\hat{p}_{t+1}\right)=\hat{q}_{t}+\hat{p}_{t}-(1-\omega \beta)\left(\hat{\varphi}_{t}+\hat{p}_{t}\right)
$$

- \hat{q} : deviation from $\mathrm{SS} p^{*} / P^{*}$. \hat{p} : deviation from SS p^{*}

Solving for \hat{q}_{t}

$$
\begin{gathered}
\hat{q}_{t}=(1-\omega \beta) \hat{\varphi}_{t}+\omega \beta\left[E_{t}\left(\hat{q}_{t+1}+\hat{p}_{t+1}\right)-\hat{p}_{t}\right] \\
\hat{q}_{t}=(1-\omega \beta) \hat{\varphi}_{t}+\omega \beta E_{t}\left(\hat{q}_{t+1}+\pi_{t+1}\right)
\end{gathered}
$$

using $\hat{q}_{t}=\frac{\omega}{1-\omega} \hat{\pi}_{t}$ to eliminate \hat{q}_{t}

$$
\begin{gathered}
\frac{\omega}{1-\omega} \pi_{t}=(1-\omega \beta) \hat{\varphi}_{t}+\omega \beta E_{t}\left(\frac{\omega}{1-\omega} \pi_{t+1}+\pi_{t+1}\right) \\
\pi_{t}=\frac{(1-\omega \beta)(1-\omega) \hat{\varphi}_{t}}{\omega}+\beta E_{t} \pi_{t+1} \\
\pi_{t}=\tilde{\kappa} \hat{\varphi}_{t}+\beta E_{t} \pi_{t+1}
\end{gathered}
$$

Recall: φ : roughly measure of the output gap (proportional to price ratio).

- no backward-looking terms, expected future inflation matters, not lagged inflation (recall Lucas Critique)
- marginal cost instead of output gap - under some restrictions the same
- from household's labor supply decision, real wage must equal marginal rate of substitution between leisure and consumption

$$
\hat{w}_{t}-\hat{p}_{t}=\eta \hat{n}_{t}+\sigma \hat{y}_{t}
$$

- using

$$
\hat{c}_{t}=\hat{y}_{t}=\hat{n}_{t}+\hat{z}_{t}
$$

- marginal costs equals real wage divided by marginal product of labor $\left(Z_{t}\right)$

$$
\begin{aligned}
\hat{\varphi}_{t} & =\hat{w}_{t}-\hat{p}_{t}-\hat{z}_{t}=\hat{w}_{t}-\hat{p}_{t}-\left(\hat{y}_{t}-\hat{n}_{t}\right) \\
& =\eta \hat{n}_{t}+\sigma \hat{y}_{t}-\hat{z}_{t}=\eta\left(\hat{y}_{t}-\hat{z}_{t}\right)+\sigma \hat{y}_{t}-\hat{z}_{t} \\
& =(\eta+\sigma)\left[\hat{y}_{t}-\frac{1+\eta}{(\eta+\sigma)} \hat{z}_{t}\right]
\end{aligned}
$$

where

$$
\hat{y}_{t}^{f}=\frac{1+\eta}{(\eta+\sigma)} \hat{z}_{t}
$$

implying that

$$
\hat{\varphi}_{t}=(\eta+\sigma)\left[\hat{y}_{t}-\hat{y}_{t}^{f}\right]=\gamma\left[\hat{y}_{t}-\hat{y}_{t}^{f}\right]
$$

- New Keynesian Phillips Curve becomes

$$
\pi_{t}=\kappa x_{t}+\beta E_{t} \pi_{t+1}
$$

- more complicated when do not have constant returns to scale, but principle is same

IS curve

$$
\hat{y}_{t}=E_{t} \hat{y}_{t+1}-\frac{1}{\sigma}\left(\hat{\imath}_{t}-E_{t} \pi_{t+1}\right)
$$

- expressed in terms of the output gap $x_{t}=\hat{y}_{t}-\hat{y}_{t}^{f}$

$$
x_{t}=E_{t} x_{t+1}-\frac{1}{\sigma}\left(\hat{\imath}_{t}-E_{t} \pi_{t+1}\right)+u_{t}
$$

where $u_{t}=E_{t} \hat{y}_{t+1}^{f}-\hat{y}_{t}^{f}$

- Taylor Rule for nominal interest rate

$$
\hat{\imath}_{t}=\delta_{\pi} \pi_{t}+\delta_{x} x_{t}+v_{t}
$$

- Start from this point next time.

Conclusion

- Today: New Keynsian Model
- New Keynesian model:

1. Nominal rigidities: prices are sticky, i.e. slow to adjust.
2. This leads to a role for stabilization policies.

- Next time: More New Keynesian Models.

Log-linearizing

- dividing second equation by $P_{t}^{1-\theta}$

$$
1=(1-\omega) Q_{t}^{1-\theta}+\omega\left(\frac{P_{t-1}}{P_{t}}\right)^{1-\theta}
$$

- expressed in percent deviations about steady state with $\frac{P_{t-1}}{P_{t}}=1$

$$
\begin{gathered}
1=(1-\omega)\left(1+(1-\theta) \hat{q}_{t}\right)+\omega\left(1-(1-\theta) \hat{\pi}_{t}\right) \\
\hat{q}_{t}=\frac{\omega}{1-\omega} \hat{\pi}_{t}
\end{gathered}
$$

- rewrite first equation as (multiply through denominator)
$Q_{t} E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta-1} C_{t+i}^{1-\sigma}=\mu E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i} \varphi_{t+i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta} C_{t+i}^{1-\sigma}$
$\triangleright Q=\frac{p_{t}^{*}}{P_{t}}=\left(\frac{\theta}{\theta-1}\right) \frac{E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i} \varphi_{t+i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta} C_{t+i}^{1-\sigma}}{E_{t} \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left(\frac{P_{t+i}}{P_{t}}\right)^{\theta-1} C_{t+i}^{1-\sigma}}$
- Approximate the left hand side as

$$
\begin{aligned}
& \frac{C^{1-\sigma}}{1-\omega \beta}+\left(\frac{C^{1-\sigma}}{1-\omega \beta}\right) \hat{q}_{t} \\
& +C^{1-\sigma} \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left[(1-\sigma) E_{t} \hat{C}_{t+i}+(\theta-1)\left(E_{t} \hat{p}_{t+i}-\hat{p}_{t}\right)\right]
\end{aligned}
$$

- Vars w/o time subscript are steady-state (C)
- Hats: deveiation from steady-state.
- Approximate the right hand side as

$$
\begin{aligned}
& \mu\left(\frac{C^{1-\sigma}}{1-\omega \beta}\right) \varphi \\
& +\mu \varphi C^{1-\sigma} \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left[(1-\sigma) E_{t} \hat{C}_{t+i}+\theta\left(E_{t} \hat{p}_{t+i}-\hat{p}_{t}\right)+E_{t} \hat{\varphi}_{t+i}\right]
\end{aligned}
$$

- Equating and noting that $\mu \varphi=1$

$$
\begin{aligned}
& \left(\frac{1}{1-\omega \beta}\right) \hat{q}_{t}+\sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left[(-1)\left(E_{t} \hat{p}_{t+i}-\hat{p}_{t}\right)\right]=\sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left[E_{t} \hat{\varphi}_{t+i}\right] \\
& \rightarrow\left(\frac{1}{1-\omega \beta}\right) \hat{q}_{t}=\sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left[E_{t}\left(\hat{\varphi}_{t+i}+\hat{p}_{t+i}\right)\right]-\left(\frac{1}{1-\omega \beta}\right) \hat{p}_{t} \\
& \quad \rightarrow \hat{p}_{t}^{*}=\hat{q}_{t}+\hat{p}_{t}=(1-\omega \beta) \sum_{i=0}^{\infty} \omega^{i} \beta^{i}\left[E_{t}\left(\hat{\varphi}_{t+i}+\hat{p}_{t+i}\right)\right]
\end{aligned}
$$

the optimal nominal price equals the expected discounted value of future nominal marginal costs

- can write equation as

$$
\omega \beta E_{t}\left(\hat{q}_{t+1}+\hat{p}_{t+1}\right)=\hat{q}_{t}+\hat{p}_{t}-(1-\omega \beta)\left(\hat{\varphi}_{t}+\hat{p}_{t}\right)
$$

