Macro II

Professor Griffy

UAlbany

Spring 2021

Announcements

- Today: the Mortensen and Pissarides model (canonical equilibrium search)
- New homework on my website.
- Code for Aiyagari w/ labor-leisure choice on the cluster.
- Email me if you can't access cluster.
- Due next Wednesday.

Arrival Rates of Job Offers

- Last time: we assumed that the arrival rate of job offers is exogenous: regardless of equilibrium, the frequency with which you receive an offer is the same.
- Consider an example:

1. There is a productivity downturn:
2. How does a firm respond?
3. McCall model: the quality of the offer distribution deteriorates, but searchers receive offers at the same rate.

- Essentially, slackness in the labor market is due to worker selectivity, not due to decisions made by the firm.
- Obviously, firms do respond.

The Beveridge Curve

- Another implication: there is no relationship between unemployment and vacancy creation.

The DMP Model ("Ch. 1 of Pissarides (2000)")

- Agents:

1. Employed workers;
2. unemployed workers;
3. vacant firms;
4. matched firms.

- Linear utility $(u=b, u=w)$ and production $y=p>b$.
- Matching function:

1. Determines number of meetings between firms \& workers.
2. Args: levels searchers \& vacancies $(U=u \times L, V=v \times L)$
3. Constant returns to scale (L is lab. force):

$$
M(u L, v L)=u L \times M\left(1, \frac{v}{u}\right)=u L \times p(\theta)
$$

4. where $\theta=\frac{v}{u}$ is "labor market tightness"
5. Match rates:

$$
\underbrace{p(\theta)}_{\text {Worker }}=\theta \underbrace{q(\theta)}_{\text {Firm }}
$$

Worker Value Functions

- Value functions:

1. Employed at wage $w: W(w)$
2. Unemployed: U.

- Unemployed flow value:

$$
r U=b+p(\theta) E[W(w)-U]
$$

- Employed flow value:

$$
r W(w)=w+\delta[U-W(w)]
$$

Firm Value Functions

- Value functions:

1. Filled, paying wage $w: J(w)$
2. Vacant V.

- Vacant flow value:

$$
r V=-\kappa+q(\theta) E[J(w)-V]
$$

- Matched flow value:

$$
r J(w)=(p-w)+\delta[V-J(w)]
$$

- Free entry equilibrium condition:

$$
\begin{aligned}
r V & =0 \\
\rightarrow \frac{\kappa}{E[J(w)]} & =q(\theta)
\end{aligned}
$$

- This is just a market clearing condition!

Equilibrium Objects

- Three key equilibrium objects:

1. Wages;
2. unemployment;
3. $\theta=\frac{v}{u}$ (vacancies).

- How we determine each of these is largely a modeling decision.
- Steady-state: pin down unemployment via flow equation.
- Free-entry: Assume that firms always post vacancies so that free entry binds.
- Wages: Assume that wages are determined by a surplus(profit) sharing rule.

Steady-State Unemployment

- Flow of unemployment:

$$
\dot{u}=\delta(1-u)-p(\theta) u
$$

- Steady-state:

$$
\begin{aligned}
0 & =\delta(1-u)-p(\theta) u \\
p(\theta) u & =\delta(1-u) \\
u & =\frac{\delta}{\delta+p(\theta)}
\end{aligned}
$$

- Same as McCall with $\alpha=p(\theta)$.
- (Note: no heterogeneity \& $p>b \rightarrow$ all wages accepted.)

Free Entry

- Free entry $V=0$:

$$
\begin{aligned}
r J(w) & =(p-w)+\delta[\nmid-J(w)] \\
(r+\delta) J(w) & =(p-w)
\end{aligned}
$$

- Vacancy creation condition (i.e., free entry imposed):

$$
\begin{aligned}
q(\theta) & =\frac{\kappa}{E[J(w)]} \\
q(\theta) & =\frac{\kappa(r+\delta)}{(p-w)} \\
\theta & =q^{-1}\left(\frac{\kappa(r+\delta)}{(p-w)}\right)
\end{aligned}
$$

- Thus, mapping between wages and $\theta .1$ equation, 2 unknowns.
- Need equation to determine wages in equilibrium.

Wage Determination

- Workers and firms bargain over the surplus of a match.
- Surplus of a match:

$$
\begin{aligned}
& S(w)=W(w)+J(w)-U-X \\
& S(w)=W(w)+J(w)-U
\end{aligned}
$$

- Nash Bargaining splits this surplus according to a bargaining weight, β :

$$
w=\operatorname{argmax}_{w} \underbrace{(W(w)-U)^{\beta}}_{\text {Net Utility }} \underbrace{(J(w)-V)^{1-\beta}}_{\text {Net Profits }}
$$

Wage Determination

- Nash Bargaining splits this surplus according to a bargaining weight, β :

$$
\begin{aligned}
w & =\operatorname{argmax}_{w} \underbrace{(W(w)-U)^{\beta}}_{\text {Net Utility }} \underbrace{(J(w)-V)^{1-\beta}}_{\text {Net Profits }} \\
0 & =\beta(W(w)-U)^{\beta-1}(J(w)-V)^{1-\beta} \frac{\partial W}{\partial w} \\
& +(1-\beta)(J(w)-V)^{-\beta}(W(w)-U) \frac{\partial J}{\partial w}
\end{aligned}
$$

$-\frac{\partial W}{\partial w}=1, \frac{\partial J}{\partial w}=-1$:

$$
\begin{aligned}
\beta\left(\frac{J(w)}{W(w)-U}\right)^{1-\beta} & =(1-\beta)\left(\frac{W(w)-U}{J(w)}\right)^{\beta} \\
\beta(J(w)+W(w)-U) & =W(w)-U \\
\beta S(w) & =W(w)-U
\end{aligned}
$$

Wage Determination

- Nash Bargaining splits this surplus according to a bargaining weight, β :

$$
w=\operatorname{argmax}_{w} \underbrace{(W(w)-U)^{\beta}}_{N e t ~ U t i l i t y} \underbrace{(J(w)-V)^{1-\beta}}_{\text {Net Profits }}
$$

w solves $(W(w)-U)=\beta(W(w)+J(w)-U)=\beta S(w)$

- Plug in for each of these:

$$
\begin{aligned}
&(1-\beta)[W(w)-U]=\beta J(w) \\
& \beta J(w)=(1-\beta)[w-\delta(U-V(w)) \\
&-b-p(\theta)(W(w)-U)] \\
&(1-\beta)(w-b)=\beta J(w)+(1-\beta)(p(\theta)+\delta)[W(w)-U] \\
&(1-\beta)(w-b)=\beta(p-w-\delta J(w)) \\
&+(1-\beta)(p(\theta)+\delta)[W(w)-U]
\end{aligned}
$$

Wage Determination

- Note that $\beta S(w)=[W(w)-U]$

$$
\begin{aligned}
(1-\beta)(w-b) & =\beta(p-w-\delta J(w)) \\
& +(1-\beta)(p(\theta)+\delta) \beta S(w)
\end{aligned}
$$

- And $(1-\beta) S(w)=J(w) \rightarrow S(w)=\frac{J(w)}{1-\beta}$

$$
\begin{aligned}
(1-\beta)(w-b) & =\beta(p-w-\delta J(w)) \\
& +(1-\beta)(p(\theta)+\delta) \beta \frac{J(w)}{1-\beta} \\
w & =(1-\beta) b+\beta p+p(\theta) \beta J(w)
\end{aligned}
$$

- Free entry condition: $q(\theta)=\frac{\kappa}{J(w)} \rightarrow p(\theta)=\frac{\theta \kappa}{J(w)}$

$$
w=(1-\beta) b+\beta p+\beta \theta \kappa
$$

Computation

- How would we solve this model?
- Need way to compute three equilibrium objects:

1. Wages;
2. unemployment;
3. $\theta=\frac{v}{u}$ (vacancies).

- How we determine each of these is largely a modeling decision.
- Steady-state: pin down unemployment via flow equation.
- Free-entry: Assume that firms always post vacancies so that free entry binds.
- Wages: Assume that wages are determined by a surplus(profit) sharing rule.
- Computation:
- Wages, vacancies: depend on surplus.
- Unemployment: law of motion.
- Here: add aggregate shocks.

Worker Value Functions

- Value functions:

1. Employed at wage $w: W(w)$
2. Unemployed: U.

- Unemployed flow value:

$$
r U(z)=b+p(\theta) E[W(w, z)-U(z)]+\gamma E\left[U\left(z^{\prime}\right)-U(z)\right]
$$

- Employed flow value:

$$
\begin{aligned}
r W(w, z) & =w(z)+\delta[U(z)-W(w, z)] \\
& +\gamma E\left[W\left(w^{\prime}, z^{\prime}\right)-W(w, z)\right]
\end{aligned}
$$

Firm Value Functions

- Value functions:

1. Filled, paying wage $w: J(w)$
2. Vacant V.

- Vacant flow value:

$$
r V(z)=-\kappa+q(\theta(z)) E[J(w, z)-V(z)]+\gamma\left[V\left(z^{\prime}\right)-V(w, z)\right]
$$

- Matched flow value:

$$
\begin{aligned}
r J(w, z) & =(z+p-w)+\delta[V(z)-J(w, z)] \\
& +\gamma\left[J\left(w^{\prime}, z^{\prime}\right)-J(w, z)\right]
\end{aligned}
$$

- Free entry equilibrium condition:

$$
\begin{aligned}
r V & =0 \\
\rightarrow \frac{\kappa}{E[J(w, z)]} & =q(\theta)
\end{aligned}
$$

Computation

- Surplus of a match:

$$
\begin{aligned}
& S(w, z)=W(w, z)+J(w, z)-U(z)-V(z) \\
& S(w, z)=W(w, z)+J(w, z)-U(z)
\end{aligned}
$$

- Plugging in and using $\beta S(w, z)$ is workers surplus and $(1-\beta) S(w, z)$ is firm surplus:

$$
S(z)=\frac{p+z}{r+\delta+\gamma}-\frac{b+\theta \kappa \frac{\beta}{1-\beta}}{r+\delta+\gamma}+\frac{\gamma}{r+\delta+\gamma} \int_{z^{\prime}} S(x) d F(x)
$$

- This is just a contraction: $\frac{\gamma}{r+\delta+\gamma}<1$.
- Pick $S_{0}\left(z_{i}\right)=0, \forall i$ and iterate.
- Yields vacancies $q(\theta)=\frac{\kappa}{(1-\beta) S(z)}$ and wages $(w=\beta S(z))$.

Next Time

- Either:
- Efficiency in search (Hosios Condition);
- or Directed/competitive search.
- Be sure to check for homework on my website (due next Wednesday).
- Final in less than 2 weeks.

