Macro II: Stochastic Processes I

Professor Griffy

UAlbany

Spring 2023

Introduction

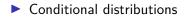
► Today: start talking about time series/stochastic processes.

Homework due in one week.

Continue stochastic processes on Tuesday.

Stochastic Processes

Random variables



Markov processes

Preliminaries

X is a random variable, x is its realization

Support: smallest set S such that $\Pr(x \in S) = 1$

• Cumulative distribution function: $F(x) = \Pr(X \le x)$

• Density function:
$$f(x) = \frac{d}{dx}F(x)$$
 implying that $f(x) dx = dF(x)$

The Expected Value

Mean is the expectation

$$\bar{X} = E(X) = \int_{-\infty}^{\infty} x dF(x) = \int_{-\infty}^{\infty} x f(x) dx$$

The expectation of a function of a random variable, g(X), is

$$E\left(g\left(X\right)\right) = \int_{-\infty}^{\infty} g\left(X\right) dF\left(x\right)$$

Note that $E(g(X)) \neq g(\overline{X})$ unless g(X) is linear, i.e.

 $g(X) = b \cdot X$

The Variance

► Variance

$$V(X) = E\left[\left(X - \bar{X}\right)^2\right]$$

 $[V(X)]^{\frac{1}{2}}$

Jointly Distributed Random Variables

Random vector (X, Y)

▶ Joint distribution function: $F(x, y) = Pr(X \le x, Y \le y)$

• Covariance:
$$C(X, Y) = E\left[\left(X - \bar{X}\right) \cdot \left(Y - \bar{Y}\right)\right]$$

• Cross-correlation
$$=\frac{C(X,Y)}{[V(X) \cdot V(Y)]^{\frac{1}{2}}}$$

Expectation of a linear combination

$$E(aX+bY)=aE(X)+bE(Y)$$

What is a Stochastic Process?

Stochastic process is an infinite sequence of random variables {X_t}[∞]_{t=-∞}

• j'th autocovariance =
$$\gamma_j = C(X_t, X_{t-j})$$

Strict stationarity: distribution of (X_t, X_{t+j1}, X_{t+j2}, ...X_{t+jn},) does not depend on t

Covariance stationarity: X
_t and C(X_t, X_{t-j}) do not depend on t

Defining a Conditional Density

• Work with random vector $\underline{x} = (X, Y) \sim F(x, y)$.

X and Y are random variables

x and y are realizations of the random variables

F(x, y) is joint cumulative distribution

• f(x, y) is joint density function

Conditional Variables and Independence

Conditional probability

▶ when
$$\Pr(\underline{x} \in B) > 0$$
,
 $\Pr(\underline{x} \in A | \underline{x} \in B) = \Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$.

• Conditional distribution F(y|x) (handles Pr(B) = 0)

• Marginal distribution: $F_X(x) = \Pr(X \le x)$

F
$$(y|x)$$
 is Pr $(Y \le y)$ conditional on $X \le x$

Defining a Conditional Density

Independence: The random variables X and Y are independent if

$$F(x,y) = F_X(x) F_Y(y)$$

If X and Y are independent, then

$$F(y|x) = F_Y(y)$$

and

$$F(x|y) = F_X(x)$$

i.i.d means independent and identically distributed

Conditional (mathematical, rational) expectation

$$E(Y|x) = \int_{-\infty}^{\infty} y dF(y|x) = \int_{-\infty}^{\infty} y f(y|x) dy$$

Markov Property

- A particular conditional process is called a Markov chain.
- Markov Property: A stochastic process {x_t} is said to have the Markov property if for all k ≥ 1 and all t,

$$Prob(x_{t+1}|x_t, x_{t-1}, ..., x_{t-k}) = Prob(x_{t+1}|x_t)$$
(1)

- That is, the dependence between random events can be summarized exclusively with the previous event.
- This allows us to characterize this process with a Markov chain.
- Markov chains are a key way of characterizing stochastic events in our models.

Markov Chains

- For a stochastic process with the Markov property, we can characterize the process with a Markov chain.
- A time-invariant Markov chain is defined by the tuple:
 - 1. an n-dimensional state space of vectors $e_i, i = 1, ..., n$,
 - where e_i is an n x 1 vector where
 - the ith entry equals 1 and the vector contains 0s otherwise.
 - 2. a transiton matrix P (n x n), which records the conditional probability of transitioning between states
 - 3. a vector π_0 (n x 1), that records the unconditional probability of being in state i at time 0.
- The key object here is P. Elements of this matrix are given by

$$P_{ij} = Prob(x_{t+1} = e_j | x_t = e_i)$$
(2)

In other words, if you're in state i, this is the probability you enter state j.

Markov Chains

Some assumptions on P and π_0 :

For i = 1, ..., n, P satisfies

$$\sum_{j=1}^{n} P_{ij} = 1 \tag{3}$$

 \blacktriangleright π_0 satisfies

$$\sum_{i=1}^{n} \pi_{0i} = 1$$
 (4)

Where does this first property become useful?

• How would you calculate $Prob(x_{t+2} = e_j | x_t = e_i)$?

$$=\sum_{h=1}^{n} Prob(x_{t+2} = e_j | x_{t+1} = e_h) Prob(x_{t+1} = e_h | x_t = e_i)$$
(5)

$$=\sum_{h=1}^{n} P_{ih} P_{hj} = P_{ij}^{(2)}$$
(6)

Markov Chains

This is also true in general:

$$Prob(x_{t+k} = e_j | x_t = e_i) = P_{ij}^{(k)}$$
 (7)

Why is this useful? We can use π₀ with this transition matrix to characterize the probability distribution over time:

$$\pi_1' = \pi_0' P \tag{8}$$

$$\pi_2' = \pi_0' P^2 \tag{9}$$

(10)

Thus, by knowing the initial distribution and the transition matrix, P, we know the distribution at time t

Stationary Distributions

- Where does this trend to over time?
- We know that the transition of the distribution takes the form $\pi'_{t+1} = \pi'_t P$.
- This distribution is stationary if

$$\pi_{t+1} = \pi_t \tag{11}$$

- (we will relax this to t large enough momentarily)
- This means that for a stationary distribution, π , P satisfy

$$\pi' = \pi' P \text{ or } \tag{12}$$

$$(I - P')\pi = 0$$
 (13)

Anyone recognize this?

Stationary Distributions

$$\pi' = \pi' P \text{ or }$$
 (14)
 $(I - P')\pi = 0$ (15)

A lot of linearizing dynamic systems is about

- finding eigenvectors with corresponding eigenvalues of less than 1 (non-explosive).
- solving for initial conditions that are orthogonal to the explosive eigenvectors (i.e., the system does not explode).
- Intuitive refresher:
 - eigenvector: tells me the direction a system moves (i.e., distance traveled)
 - eigenvalue: tells me how many times it traveled since I last saw it.

Stationary Distributions

$$\pi' = \pi' P \text{ or}$$
 (14)
 $(I - P')\pi = 0$ (15)

It is useful to note (and will be useful when we think of linearized solution techniques), that

• π is the (normalized) eigenvector of the stochastic matrix *P*.

In this case, the eigenvalue (root) is 1.

Asymptotically Stationary Distributions

- What about when π₀≠π_t? Can it still have a notion of stationarity?
- Yes. Asymptotic stationarity.
- Asymptotic stationarity:

$$\lim_{t \to \infty} \pi_t = \pi_\infty \tag{16}$$

- where $\pi'_{\infty} = \pi'_{\infty} P$
- Next, is this ending point unique?
- ▶ Does π_{∞} depend on π_0 ?
- If not, π_{∞} is an invariant or stationary distribution of *P*.
- This will be very useful when we talk about heterogeneous agents.

Some Examples

• Let's pick a simple initial condition: $\pi'_0 = [1 \ 0 \ 0]$.

And a matrix

$$P = \begin{bmatrix} 0.9 & 0.1 & 0 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.2 & 0.7 \end{bmatrix}$$
(17)

Now use Matlab to iterate.

Preliminaries

>> piMat = MMat'*piMat	>> piMat = MMat'*piMat
piMat =	piMat =
0.9000 0.1000 0	0.8300 0.1500 0.0200
Figure: First iteration	Figure: 2nd iteration
>> piMat = MMat^(100)'*piMat	>> piMat = MMat^(1000)'*piMat
piMat =	piMat =
0.6154 0.2308 0.1538	0.6154 0.2308 0.1538
Figure: First iteration	Figure: Grid of k values

▶ This distribution (*P*) is asymptotically stationary!

Preliminaries

>> piMat = MMat'*piMat	>> piMat = MMat'*piMat
piMat =	piMat =
0.9000 0.1000 0	0.8300 0.1500 0.0200
Figure: First iteration	Figure: 2nd iteration

>> piMat = MMat^(100)'*piMat	>> piMat = MMat^(1000)'*piMat
piMat =	piMat =
0.6154 0.2308 0.1538	0.6154 0.2308 0.1538

Figure: First iteration

Figure: Grid of k values

- This distribution (P) is (probably) a unique invariant distribution.
- How would we prove this?

Ergodicity

- We would like to be able to replace conditional expectations with unconditional expectations.
- i.e., not indexed by time or initial conditions.
- Some preliminaries:
 - Invariant function: "a random variable y_t = ȳ'x_t is said to be invariant if y_t = y₀, t ≥ 0, for all realizations of x_t, t ≥ 0 that occur with positive probability under (P, π)."
- i.e., the state x can move around, but the outcome y_t stays constant at y₀.

Ergodicity

Ergodicity:

"Let (P, π) be a stationary Markov chain. The chain is said to be ergodic if the only invariant functions ȳ are constant with probability 1 under the stationary unconditional probability distribution π."

In other words, for any initial distribution, the only functions that satisfy the definition of an invariant function are the same.

Next Time

More stochastic processes.

Homework due in one week.