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Introduction

I Today: start talking about time series/stochastic processes.

I Homework due in one week.

I Continue stochastic processes on Tuesday.



Stochastic Processes

I Random variables

I Conditional distributions

I Markov processes



Preliminaries

I X is a random variable, x is its realization

I Support: smallest set S such that Pr (x ∈ S) = 1

I Cumulative distribution function: F (x) = Pr(X ≤ x)

I Density function: f (x) = d
dx F (x) implying that

f (x) dx = dF (x)



The Expected Value

I Mean is the expectation

X̄ = E (X) =

∫ ∞

−∞
xdF (x) =

∫ ∞

−∞
xf (x) dx

I The expectation of a function of a random variable, g (X) , is

E (g (X)) =

∫ ∞

−∞
g (X) dF (x)

I Note that E (g (X)) 6= g
(
X̄
)

unless g (X) is linear, i.e.

g (X) = b · X



The Variance

I Variance

V (X) = E
[(

X − X̄
)2
]

I Standard deviation
[V (X)]

1
2



Jointly Distributed Random Variables

I Random vector (X ,Y )

I Joint distribution function: F (x , y) = Pr(X ≤ x ,Y ≤ y)

I Covariance: C (X ,Y ) = E
[(

X − X̄
)
·
(
Y − Ȳ

)]
I Cross-correlation = C(X ,Y )

[V (X)·V (Y )]
1
2

I Expectation of a linear combination

E (aX + bY ) = aE (X) + bE (Y )



What is a Stochastic Process?

I Stochastic process is an infinite sequence of random variables
{Xt}∞t=−∞

I j’th autocovariance = γj = C (Xt ,Xt−j)

I Strict stationarity: distribution of (Xt ,Xt+j1 ,Xt+j2 , ...Xt+jn , )
does not depend on t

I Covariance stationarity: X̄t and C (Xt ,Xt−j) do not depend
on t



Defining a Conditional Density

I Work with random vector x = (X ,Y ) ∼ F (x , y).

I X and Y are random variables

I x and y are realizations of the random variables

I F (x , y) is joint cumulative distribution

I f (x , y) is joint density function



Conditional Variables and Independence

I Conditional probability

I when Pr(x ∈ B) > 0,

Pr(x ∈ A| x ∈ B) = Pr(A|B) =
Pr(A ∩ B)

Pr(B)
.

I Conditional distribution F (y | x) (handles Pr(B) = 0)

I Marginal distribution: FX (x) = Pr (X ≤ x)

I F (y | x) is Pr (Y ≤ y) conditional on X ≤ x



Defining a Conditional Density

I Independence: The random variables X and Y are
independent if

F (x , y) = FX (x)FY (y)

I If X and Y are independent, then

F (y | x) = FY (y)

and
F (x | y) = FX (x)

I i.i.d means independent and identically distributed

I Conditional (mathematical, rational) expectation

E (Y | x) =
∫ ∞

−∞
ydF (y | x) =

∫ ∞

−∞
yf (y | x) dy .



Markov Property

I A particular conditional process is called a Markov chain.

I Markov Property: A stochastic process {xt} is said to have
the Markov property if for all k ≥ 1 and all t,

Prob(xt+1|xt , xt−1, ..., xt−k) = Prob(xt+1|xt) (1)

I That is, the dependence between random events can be
summarized exclusively with the previous event.

I This allows us to characterize this process with a Markov
chain.

I Markov chains are a key way of characterizing stochastic
events in our models.



Markov Chains
I For a stochastic process with the Markov property, we can

characterize the process with a Markov chain.
I A time-invariant Markov chain is defined by the tuple:

1. an n-dimensional state space of vectors ei , i = 1, ...., n,
I where ei is an n x 1 vector where
I the ith entry equals 1 and the vector contains 0s otherwise.

2. a transiton matrix P (n x n), which records the conditional
probability of transitioning between states

3. a vector π0 (n x 1), that records the unconditional probability
of being in state i at time 0.

I The key object here is P . Elements of this matrix are given by

Pij = Prob(xt+1 = ej |xt = ei) (2)

I In other words, if you’re in state i, this is the probability you
enter state j.



Markov Chains
I Some assumptions on P and π0:

I For i = 1, ..., n, P satisfies
n∑

j=1
Pij = 1 (3)

I π0 satisfies
n∑

i=1
π0i = 1 (4)

I Where does this first property become useful?
I How would you calculate Prob(xt+2 = ej |xt = ei)?

=
n∑

h=1
Prob(xt+2 = ej |xt+1 = eh)Prob(xt+1 = eh|xt = ei)

(5)

=
n∑

h=1
PihPhj = P(2)

ij (6)



Markov Chains

I This is also true in general:

Prob(xt+k = ej |xt = ei) = P(k)
ij (7)

I Why is this useful? We can use π0 with this transition matrix
to characterize the probability distribution over time:

π′
1 = π′

0P (8)
π′

2 = π′
0P2 (9)

... (10)

I Thus, by knowing the initial distribution and the transition
matrix, P , we know the distribution at time t



Stationary Distributions

I Where does this trend to over time?

I We know that the transition of the distribution takes the form
π′

t+1 = π′
tP .

I This distribution is stationary if

πt+1 = πt (11)

I (we will relax this to t large enough momentarily)

I This means that for a stationary distribution, π,P satisfy

π′ = π′P or (12)
(I − P ′)π = 0 (13)

I Anyone recognize this?



Stationary Distributions

π′ = π′P or (14)
(I − P ′)π = 0 (15)

I A lot of linearizing dynamic systems is about
I finding eigenvectors with corresponding eigenvalues of less

than 1 (non-explosive).
I solving for initial conditions that are orthogonal to the

explosive eigenvectors (i.e., the system does not explode).

I Intuitive refresher:
I eigenvector: tells me the direction a system moves (i.e.,

distance traveled)
I eigenvalue: tells me how many times it traveled since I last

saw it.



Stationary Distributions

π′ = π′P or (14)
(I − P ′)π = 0 (15)

I It is useful to note (and will be useful when we think of
linearized solution techniques), that

I π is the (normalized) eigenvector of the stochastic matrix P .

I In this case, the eigenvalue (root) is 1.



Asymptotically Stationary Distributions
I What about when π0��=πt? Can it still have a notion of

stationarity?

I Yes. Asymptotic stationarity.

I Asymptotic stationarity:

lim
t→∞

πt = π∞ (16)

I where π′
∞ = π′

∞P

I Next, is this ending point unique?

I Does π∞ depend on π0?

I If not, π∞ is an invariant or stationary distribution of P .

I This will be very useful when we talk about heterogeneous
agents.



Some Examples

I Let’s pick a simple initial condition: π′
0 = [1 0 0].

I And a matrix

P =

0.9 0.1 0
0.2 0.6 0.2
0.1 0.2 0.7

 (17)

I Now use Matlab to iterate.



Preliminaries

Figure: First iteration Figure: 2nd iteration

Figure: First iteration Figure: Grid of k values

I This distribution (P) is asymptotically stationary!
I Unique? Try π′

0 = [0 0 1]



Preliminaries

Figure: First iteration Figure: 2nd iteration

Figure: First iteration Figure: Grid of k values

I This distribution (P) is (probably) a unique invariant
distribution.

I How would we prove this?



Ergodicity

I We would like to be able to replace conditional expectations
with unconditional expectations.

I i.e., not indexed by time or initial conditions.

I Some preliminaries:

I Invariant function: “a random variable yt = ȳ ′xt is said to be
invariant if yt = y0, t ≥ 0, for all realizations of xt , t ≥ 0 that
occur with positive probability under (P , π).”

I i.e., the state x can move around, but the outcome yt stays
constant at y0.



Ergodicity

I Ergodicity:

I “Let (P , π) be a stationary Markov chain. The chain is said to
be ergodic if the only invariant functions ȳ are constant with
probability 1 under the stationary unconditional probability
distribution π.”

I In other words, for any initial distribution, the only functions
that satisfy the definition of an invariant function are the
same.



Next Time

I More stochastic processes.

I Homework due in one week.
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