Macro II: Stochastic Processes I

Professor Griffy

UAlbany

Spring 2021

Introduction

- Today: start talking about time series/stochastic processes.
- Homework due on Wednesday.
- I get my 2nd Covid vaccine at 10am Wednesday.
- I'm thinking that because a lot of people get non-trivial side effects (headaches, pain, etc.) I will not lecture.
- If so, will post slides online.
- Material relatively easy (simple econometrics), so I will just post slides.
- Note: side effects are generally because vaccine is working (body reacting to perceived threat).

Stochastic Processes

- Random variables
- Conditional distributions
- Markov processes

Preliminaries

- X is a random variable, x is its realization
- Support: smallest set S such that $\operatorname{Pr}(x \in S)=1$
- Cumulative distribution function: $F(x)=\operatorname{Pr}(X \leq x)$
- Density function: $f(x)=\frac{d}{d x} F(x)$ implying that $f(x) d x=d F(x)$

The Expected Value

- Mean is the expectation

$$
\bar{X}=E(X)=\int_{-\infty}^{\infty} x d F(x)=\int_{-\infty}^{\infty} x f(x) d x
$$

- The expectation of a function of a random variable, $g(X)$, is

$$
E(g(X))=\int_{-\infty}^{\infty} g(X) d F(x)
$$

- Note that $E(g(X)) \neq g(\bar{X})$ unless $g(X)$ is linear, i.e.

$$
g(X)=b \cdot X
$$

The Variance

- Variance

$$
V(X)=E\left[(X-\bar{X})^{2}\right]
$$

- Standard deviation

$$
[V(X)]^{\frac{1}{2}}
$$

Jointly Distributed Random Variables

- Random vector (X, Y)
- Joint distribution function: $F(x, y)=\operatorname{Pr}(X \leq x, Y \leq y)$
- Covariance: $C(X, Y)=E[(X-\bar{X}) \cdot(Y-\bar{Y})]$
- Cross-correlation $=\frac{C(X, Y)}{[V(X) \cdot V(Y)]^{\frac{1}{2}}}$
- Expectation of a linear combination

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

What is a Stochastic Process?

- Stochastic process is an infinite sequence of random variables $\left\{X_{t}\right\}_{t=-\infty}^{\infty}$
- ${ }^{\prime}$ 'th autocovariance $=\gamma_{j}=C\left(X_{t}, X_{t-j}\right)$
- Strict stationarity: distribution of $\left(X_{t}, X_{t+j_{1}}, X_{t+j_{2}}, \ldots X_{t+j_{n}}\right.$, $)$ does not depend on t
- Covariance stationarity: \bar{X}_{t} and $C\left(X_{t}, X_{t-j}\right)$ do not depend on t

Defining a Conditional Density

- Work with random vector $\underline{x}=(X, Y) \sim F(x, y)$.
- X and Y are random variables
- x and y are realizations of the random variables
- $F(x, y)$ is joint cumulative distribution
- $f(x, y)$ is joint density function

Conditional Variables and Independence

- Conditional probability
- when $\operatorname{Pr}(\underline{x} \in B)>0$,

$$
\operatorname{Pr}(\underline{x} \in A \mid \underline{x} \in B)=\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} .
$$

- Conditional distribution $F(y \mid x)$ (handles $\operatorname{Pr}(B)=0$)
- Marginal distribution: $F_{X}(x)=\operatorname{Pr}(X \leq x)$
- $F(y \mid x)$ is $\operatorname{Pr}(Y \leq y)$ conditional on $X \leq x$

Defining a Conditional Density

- Independence: The random variables X and Y are independent if

$$
F(x, y)=F_{X}(x) F_{Y}(y)
$$

- If X and Y are independent, then

$$
F(y \mid x)=F_{Y}(y)
$$

and

$$
F(x \mid y)=F_{X}(x)
$$

- i.i.d means independent and identically distributed
- Conditional (mathematical, rational) expectation

$$
E(Y \mid x)=\int_{-\infty}^{\infty} y d F(y \mid x)=\int_{-\infty}^{\infty} y f(y \mid x) d y
$$

Markov Property

- A particular conditional process is called a Markov chain.
- Markov Property: A stochastic process $\left\{x_{t}\right\}$ is said to have the Markov property if for all $k \geq 1$ and all t,

$$
\begin{equation*}
\operatorname{Prob}\left(x_{t+1} \mid x_{t}, x_{t-1}, \ldots, x_{t-k}\right)=\operatorname{Prob}\left(x_{t+1} \mid x_{t}\right) \tag{1}
\end{equation*}
$$

- That is, the dependence between random events can be summarized exclusively with the previous event.
- This allows us to characterize this process with a Markov chain.
- Markov chains are a key way of characterizing stochastic events in our models.

Markov Chains

- For a stochastic process with the Markov property, we can characterize the process with a Markov chain.
- A time-invariant Markov chain is defined by the tuple:

1. an n-dimensional state space of vectors $e_{i}, i=1, \ldots, n$,

- where e_{i} is an $n \times 1$ vector where
- the ith entry equals 1 and the vector contains 0 s otherwise.

2. a transiton matrix $P(\mathrm{n} \times \mathrm{n})$, which records the conditional probability of transitioning between states
3. a vector $\pi_{0}(n \times 1)$, that records the unconditional probability of being in state i at time 0 .

- The key object here is P. Elements of this matrix are given by

$$
\begin{equation*}
P_{i j}=\operatorname{Prob}\left(x_{t+1}=e_{j} \mid x_{t}=e_{i}\right) \tag{2}
\end{equation*}
$$

- In other words, if you're in state i , this is the probability you enter state j .

Markov Chains

- Some assumptions on P and π_{0} :
- For $i=1, \ldots, n, P$ satisfies

$$
\begin{equation*}
\sum_{j=1}^{n} P_{i j}=1 \tag{3}
\end{equation*}
$$

- π_{0} satisfies

$$
\begin{equation*}
\sum_{i=1}^{n} \pi_{0 i}=1 \tag{4}
\end{equation*}
$$

- Where does this first property become useful?
- How would you calculate $\operatorname{Prob}\left(x_{t+2}=e_{j} \mid x_{t}=e_{i}\right)$?

$$
\begin{equation*}
=\sum_{h=1}^{n} \operatorname{Prob}\left(x_{t+2}=e_{j} \mid x_{t+1}=e_{h}\right) \operatorname{Prob}\left(x_{t+1}=e_{h} \mid x_{t}=e_{i}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{h=1}^{n} P_{i h} P_{h j}=P_{i j}^{(2)} \tag{6}
\end{equation*}
$$

Markov Chains

- This is also true in general:

$$
\begin{equation*}
\operatorname{Prob}\left(x_{t+k}=e_{j} \mid x_{t}=e_{i}\right)=P_{i j}^{(k)} \tag{7}
\end{equation*}
$$

- Why is this useful? We can use π_{0} with this transition matrix to characterize the probability distribution over time:

$$
\begin{align*}
& \pi_{1}^{\prime}=\pi_{0}^{\prime} P \tag{8}\\
& \pi_{2}^{\prime}=\pi_{0}^{\prime} P^{2} \tag{9}
\end{align*}
$$

- Thus, by knowing the initial distribution and the transition matrix, P, we know the distribution at time t

Stationary Distributions

- Where does this trend to over time?
- We know that the transition of the distribution takes the form $\pi_{t+1}^{\prime}=\pi_{t}^{\prime} P$.
- This distribution is stationary if

$$
\begin{equation*}
\pi_{t+1}=\pi_{t} \tag{11}
\end{equation*}
$$

- (we will relax this to t large enough momentarily)
- This means that for a stationary distribution, π, P satisfy

$$
\begin{align*}
\pi^{\prime} & =\pi^{\prime} P \text { or } \tag{12}\\
\left(I-P^{\prime}\right) \pi & =0 \tag{13}
\end{align*}
$$

- Anyone recognize this?

Stationary Distributions

$$
\begin{align*}
\pi^{\prime} & =\pi^{\prime} P \text { or } \tag{14}\\
\left(I-P^{\prime}\right) \pi & =0 \tag{15}
\end{align*}
$$

- It is useful to note (and will be useful when we think of linearized solution techniques), that
- π is the (normalized) eigenvector of the stochastic matrix P.
- In this case, the eigenvalue (root) is 1 .
- A lot of linearizing dynamic systems is about
- finding eigenvectors with corresponding eigenvalues of less than 1 (non-explosive).
- solving for initial conditions that are orthogonal to the explosive eigenvectors (i.e., the system does not explode).

Asymptotically Stationary Distributions

- What about when $\pi_{0} \neq \pi_{t}$? Can it still have a notion of stationarity?
- Yes. Asymptotic stationarity.
- Asymptotic stationarity:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \pi_{t}=\pi_{\infty} \tag{16}
\end{equation*}
$$

- where $\pi_{\infty}^{\prime}=\pi_{\infty}^{\prime} P$
- Next, is this ending point unique?
- Does π_{∞} depend on π_{0} ?
- If not, π_{∞} is an invariant or stationary distribution of P.
- This will be very useful when we talk about heterogeneous agents.

Some Examples

- Let's pick a simple initial condition: $\pi_{0}^{\prime}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$.
- And a matrix

$$
P=\left[\begin{array}{ccc}
0.9 & 0.1 & 0 \tag{17}\\
0.2 & 0.6 & 0.2 \\
0.1 & 0.2 & 0.7
\end{array}\right]
$$

- Now use Matlab to iterate.

Preliminaries

```
>> piMat = MMat'*piMat
piMat =
    0.9000
    0.1000
        0
```

Figure: First iteration

```
>> piMat = MMat^(100)'*piMat
piMat =
    0.6154
    0.2308
    0.1538
```

Figure: First iteration

$$
\begin{aligned}
& \gg \text { piMat }=\text { MMat' } * \text { piMat } \\
& \text { piMat }= \\
& 0.8300 \\
& 0.1500 \\
& 0.0200
\end{aligned}
$$

Figure: 2nd iteration

```
>> piMat = MMat^(1000)'*piMat
piMat =
    0.6154
    0.2308
    0.1538
```

Figure: Grid of k values

- This distribution (P) is asymptotically stationary!
- Unique? Try $\pi_{0}^{\prime}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$

Preliminaries

```
>> piMat = MMat'*piMat
piMat =
    0.9000
    0.1000
        0
```

Figure: First iteration

```
>> piMat = MMat^(100)'*piMat
piMat =
    0.6154
    0.2308
    0.1538
```

Figure: First iteration

```
>> piMat = MMat'*piMat
piMat =
    0.8300
    0.1500
    0.0200
```

Figure: 2nd iteration

$$
\begin{aligned}
& \gg \text { piMat }=\text { MMat^ }^{\wedge}(1000) \cdot{ }^{\prime *} \text { piMat } \\
& \text { piMat }= \\
& 0.6154 \\
& 0.2308 \\
& 0.1538
\end{aligned}
$$

Figure: Grid of k values

- This distribution (P) is (probably) a unique invariant distribution.
- How would we prove this?

Ergodicity

- We would like to be able to replace conditional expectations with unconditional expectations.
- i.e., not indexed by time or initial conditions.
- Some preliminaries:
- Invariant function: "a random variable $y_{t}=\bar{y}^{\prime} x_{t}$ is said to be invariant if $y_{t}=y_{0}, t \geq 0$, for all realizations of $x_{t}, t \geq 0$ that occur with positive probability under (P, π)."
- i.e., the state x can move around, but the outcome y_{t} stays constant at y_{0}.

Ergodicity

- Ergodicity:
- "Let (P, π) be a stationary Markov chain. The chain is said to be ergodic if the only invariant functions \bar{y} are constant with probability 1 under the stationary unconditional probability distribution π."
- In other words, for any initial distribution, the only functions that satisfy the definition of an invariant function are the same.

Next Time

- More stochastic processes.
- Homework due Wednesday.
- Potentially no lecture on Wednesday.
- If so, will post slides online.

