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Introduction

» Today: start talking about time series/stochastic processes.
» Homework due on Wednesday.
> | get my 2nd Covid vaccine at 10am Wednesday.

» I'm thinking that because a lot of people get non-trivial side
effects (headaches, pain, etc.) | will not lecture.

> If so, will post slides online.

» Material relatively easy (simple econometrics), so | will just
post slides.

> Note: side effects are generally because vaccine is working
(body reacting to perceived threat).



Stochastic Processes

» Random variables
» Conditional distributions

» Markov processes



Preliminaries

v

X is a random variable, x is its realization

v

Support: smallest set S such that Pr(x € S) =1
Cumulative distribution function: F (x) = Pr(X < x)

Density function: f (x) = d%F (x) implying that
f (x) dx = dF (x)

v

v



The Expected Value

» Mean is the expectation
X:E(X):/ XdF(X):/ xf (x) dx
— 0o —00

» The expectation of a function of a random variable, g (X), is

[e.e]

E(g (X)) = / £ (X) dF (x)

—00

> Note that E (g (X)) # g (X) unless g (X) is linear, i.e.

g(X)=b-X



The Variance

» Variance
V(X) = E[(x - X)?]

» Standard deviation

N=

[V (X)]



Jointly Distributed Random Variables

» Random vector (X, Y)
» Joint distribution function: F(x,y) =Pr(X <x,Y <y)
» Covariance: C(X,Y)=E[(X—X) (Y -Y)]
» Cross-correlation :C(#Y)1
[V(X)-v(Y)]2
» Expectation of a linear combination

E (aX + bY) = aE (X) + bE (Y)



What is a Stochastic Process?

» Stochastic process is an infinite sequence of random variables
{Xt}gi—oo
> j'th autocovariance = v; = C (X¢, X¢—j)

» Strict stationarity: distribution of (X¢, Xej, Xetjps - Xetjn» )
does not depend on t

» Covariance stationarity: X; and C (X¢, Xt—j) do not depend
ont



Defining a Conditional Density

» Work with random vector x = (X, Y) ~ F(x,y).

X and Y are random variables

x and y are realizations of the random variables
F(x,y) is joint cumulative distribution

f (x,y) is joint density function

vV vy vy



Conditional Variables and Independence

» Conditional probability
» when Pr(x € B) > 0,

Pr(AN B)

Pr(x € A|x € B) = Pr(A|B) = Pr(B)

» Conditional distribution F(y|x) (handles Pr(B) = 0)

» Marginal distribution: Fx (x) = Pr(X < x)
» F(y|x)is Pr(Y <y) conditional on X < x



Defining a Conditional Density

> Independence: The random variables X and Y are
independent if

F(x,y) = Fx(x) Fy (y)
» If X and Y are independent, then

F(ylx)=Fy(y)
and
F(xly) = Fx (x)
> i.i.d means independent and identically distributed
» Conditional (mathematical, rational) expectation

E(v|x)=/°° de(y|x>=/°° yF (y]x) dy.

—00 —00



Markov Property

v

A particular conditional process is called a Markov chain.

Markov Property: A stochastic process {x:} is said to have
the Markov property if for all k > 1 and all t,

Prob(xe41|Xe, Xe—1, -y Xe—k) = Prob(xe41|x¢) (1)

That is, the dependence between random events can be
summarized exclusively with the previous event.

This allows us to characterize this process with a Markov
chain.

Markov chains are a key way of characterizing stochastic
events in our models.



Markov Chains

» For a stochastic process with the Markov property, we can
characterize the process with a Markov chain.
> A time-invariant Markov chain is defined by the tuple:
1. an n-dimensional state space of vectors ¢;,i =1, ...., n,

» where e; is an n x 1 vector where
> the ith entry equals 1 and the vector contains Os otherwise.

2. a transiton matrix P (n x n), which records the conditional
probability of transitioning between states

3. a vector mg (n x 1), that records the unconditional probability
of being in state i at time 0.

> The key object here is P. Elements of this matrix are given by
P,'j = PrOb(Xt+1 = ej|xt = e,-) (2)

> In other words, if you're in state i, this is the probability you
enter state j.



Markov Chains

» Some assumptions on P and 7g:
» Fori=1,...,n, P satisfies

_zn:Pij—l (3)

» 7o satisfies

Zﬂ'o,‘zl (4)

> Where does this first property become useful?
» How would you calculate Prob(x;12 = €j|x; = €;)?
n

= Z Prob(x;+2 = €j|x¢+1 = en)Prob(xe+1 = ep|x: = €;)

h=1
(5)

= Z PinPhj = P (6)



Markov Chains

» This is also true in general:
Prob = e|x; = &) = PV 7
rob(xeik = j|xt = &) = P; (7)

» Why is this useful? We can use my with this transition matrix
to characterize the probability distribution over time:

m = moP (8)
Ty = Ty P? 9)
(10)

» Thus, by knowing the initial distribution and the transition
matrix, P, we know the distribution at time t



Stationary Distributions

» Where does this trend to over time?

» We know that the transition of the distribution takes the form
Ty = TP,
» This distribution is stationary if

Tt41 = Tt (1].)

» (we will relax this to t large enough momentarily)

» This means that for a stationary distribution, 7, P satisfy

' =7'Por (12)
(I—PYr=0 (13)

» Anyone recognize this?



Stationary Distributions

7' =7'Por (14)
(I-P)r=0 (15)

» It is useful to note (and will be useful when we think of
linearized solution techniques), that
» 7 is the (normalized) eigenvector of the stochastic matrix P.
> In this case, the eigenvalue (root) is 1.
» A lot of linearizing dynamic systems is about
» finding eigenvectors with corresponding eigenvalues of less
than 1 (non-explosive).

» solving for initial conditions that are orthogonal to the
explosive eigenvectors (i.e., the system does not explode).



Asymptotically Stationary Distributions

» What about when moz=m;:? Can it still have a notion of
stationarity?

> Yes. Asymptotic stationarity.
» Asymptotic stationarity:

tlngo Tt = Too (16)

» where . =7/ _P

> Next, is this ending point unique?

» Does 7, depend on my?

» If not, my is an invariant or stationary distribution of P.

» This will be very useful when we talk about heterogeneous
agents.



Some Examples

> Let's pick a simple initial condition: 7j = [1 0 0].
» And a matrix

09 01 O
P=102 06 0.2
0.1 0.2 0.7

» Now use Matlab to iterate.

(17)



Preliminaries

== p1lMat = MMat'*piMat
piMat =
0.2000

0.1000
o]

Figure: First iteration

»> plMat = MMat~(100) '*piMat
piMat =
0.6154

0.2308
0.1538

Figure: First iteration

= plMat = MMat'*piMat
piMat =

0.8200
0.1500
0.0200

Figure: 2nd iteration

== piMat = MMat”(1000)'*piMat
piMat =
0.6154

0.2308
0.1538

Figure: Grid of k values

» This distribution (P) is asymptotically stationary!

» Unique? Try my = [00 1]



Preliminaries

== plMat = MMat'*piMat
piMat =
0.2000

0.1000
o]

Figure: First iteration

== plMat = MMat~(100)'*piMat
piMat =
0.6154

0.2308
0.1538

Figure: First iteration

== plMat = MMat'*piMat
piMat =

0.8200
0.1500
0.0200

Figure: 2nd iteration

== piMat = MMat™(1000) ' *piMat
piMat =
0.6154

0.2308
0.1538

Figure: Grid of k values

» This distribution (P) is (probably) a unique invariant

distribution.

» How would we prove this?



Ergodicity

v

We would like to be able to replace conditional expectations
with unconditional expectations.

v

i.e., not indexed by time or initial conditions.

v

Some preliminaries:
» Invariant function: “a random variable y; = y’x; is said to be
invariant if y;, = yp, t > 0, for all realizations of x;,t > 0 that
occur with positive probability under (P, ).

v

i.e., the state x can move around, but the outcome y; stays
constant at yp.



Ergodicity

» Ergodicity:

» “Let (P, 7) be a stationary Markov chain. The chain is said to
be ergodic if the only invariant functions y are constant with
probability 1 under the stationary unconditional probability
distribution 7."

> In other words, for any initial distribution, the only functions
that satisfy the definition of an invariant function are the
same.



Next Time

v

More stochastic processes.

v

Homework due Wednesday.

v

Potentially no lecture on Wednesday.

v

If so, will post slides online.
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