Macro II: Difference Equations

Professor Griffy

UAlbany

Spring 2021

Introduction

- Today: review linear algebra/difference equations.
- Apply to time series/macroeconomics.

A linear difference equation

- Simple first-order linear difference equation:

$$
x_{t+1}=A x_{t}+C w_{t+1}
$$

- We might think of x_{t} as a vector of states (capital, assets, etc.)
- and w_{t+1} as a vector of shocks.
- note that w_{t+1} is not known at time-t.
- Thus, a stochastic difference equation.

A linear difference equation

- Simple first-order linear difference equation:

$$
x_{t+1}=A x_{t}+C w_{t+1}
$$

- w_{t+1} as a vector of shocks:
- A1: iid $w_{t+1} \sim N(0, I)$
- A2 (A1'):

$$
\begin{aligned}
& E\left[w_{t+1} \mid J_{t}\right]=0 \\
& E\left[w_{t+1} w_{t+1}^{\prime} \mid J_{t}\right]=1 \\
& J_{t}=\left[w_{t}, \ldots, w_{1}, x_{0}\right]
\end{aligned}
$$

- A3 (A1"):

$$
\begin{aligned}
E\left[w_{t+1}\right] & =0 \\
E\left[w_{t} w_{t-j}^{\prime}\right] & =l \text { if } j=0 \text { and } 0 \text { otherwise }
\end{aligned}
$$

A linear difference equation

- Simple first-order linear difference equation:

$$
\begin{aligned}
x_{t+1} & =A x_{t}+C w_{t+1} \\
y_{t} & =G x_{t}
\end{aligned}
$$

- We can think of y_{t} as some type of measurement equation.
- This is called a state-space formulation.
- We could also think of y_{t} as a choice variable (more on this later).

Eigenvalues and eigenvectors

- eigenvector: the direction a system moves.
- eigenvalue: the distance it moves in that direction.
- Simple first-order linear difference equation:

$$
\begin{aligned}
x_{t+1} & =A x_{t}+C w_{t+1} \\
{\left[\begin{array}{l}
x_{1, t+1} \\
x_{2, t+1}
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & \tilde{A}
\end{array}\right]\left[\begin{array}{l}
x_{1, t} \\
x_{2, t}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\tilde{C}
\end{array}\right] w_{t+1}
\end{aligned}
$$

- This says that a subset x_{1} of the state is always at its initial value, $x_{1, t}=x_{1,0}$.
- i.e., it has a unit eigenvalue: solution of $\left(A_{11}-1\right) x_{1,0}$ is any $x_{1,0}$.
- For this to be covariance stationary, the eigenvalues of \tilde{A} must all be less than 1.
- i.e., the solution to $(A-\lambda I) v=0$ is $|\lambda|<1$ or $v=0$ and $\lambda=1$.

Lag operators: preliminaries

- Let \mathbf{S} be a set of stochastic processes. Define the lag operator $L^{n}: \mathbf{S} \rightarrow \mathbf{S}, n$ an integer, by

$$
L^{n}\left\{X_{t}\right\}_{t=-\infty}^{\infty}=\left\{X_{t-n}\right\}_{t=-\infty}^{\infty}
$$

- Lag operator is linear

$$
L\left(a X_{t}+b L^{n} X_{t}\right)=\left(a L+b L^{n+1}\right) X_{t}
$$

so that lag operations can be manipulated like polynomials.

Preliminaries II

- Some geometry
- Because the lag operator is linear (everything nets out),

$$
\left(1-\phi L^{n}\right)\left(\sum_{j=0}^{J}\left(\phi L^{n}\right)^{j}\right) X_{t}=\left(1-\left(\phi L^{n}\right)^{J+1}\right) X_{t}
$$

and if $\left(\phi L^{n}\right)^{J+1} X_{t}$ and $\left(\sum_{j=0}^{J}\left(\phi L^{n}\right)^{j}\right) X_{t}$ "converge"—which might be true even if $|\phi|>1$-we get

$$
\frac{1}{1-\phi L^{n}} X_{t}=\left(\sum_{j=0}^{\infty}\left(\phi L^{n}\right)^{j}\right) X_{t}
$$

the inverse of the operation $1-\phi L^{n}$

Preliminaries II

- Suppose $X_{t}=c, \forall t$. Then

$$
L^{n} c=L^{n} X_{t}=c
$$

- The lag operator does not shift information sets

$$
L^{n} E_{t}\left(X_{t+j}\right)=E_{t}\left(X_{t+j-n}\right) \neq E_{t-n}\left(X_{t+j-n}\right)
$$

Linear difference equations again

- Another way to write it

$$
\begin{aligned}
& E_{t}\left(b_{t+1}\right)=\lambda b_{t} \\
\Leftrightarrow & E_{t}\left((1-\lambda L) b_{t+1}\right)=0
\end{aligned}
$$

- Rewrite this as

$$
\begin{aligned}
b_{t+1} & =\lambda b_{t}+\varepsilon_{t+1} \\
\varepsilon_{t+1} & \equiv b_{t+1}-E_{t}\left(b_{t+1}\right)
\end{aligned}
$$

- As a forecast error, ε_{t} forms a martingale difference sequence, i.e.

$$
E_{t}\left(\varepsilon_{t+1}\right)=0
$$

LEDE II

- Generalize

$$
\begin{aligned}
b_{t+1}-c \lambda^{t+1} & =\lambda b_{t}-\lambda c \lambda^{t}+\varepsilon_{t+1} \\
(1-\lambda L)\left(b_{t+1}-c \lambda^{t+1}\right) & =\varepsilon_{t+1} \\
b_{t+1} & =c \lambda^{t+1}+\frac{1}{1-\lambda L} \varepsilon_{t+1}
\end{aligned}
$$

where c is a constant

- Solution tells us b_{t} at any time, t.
- Goal: find (solve for) the set of admissible $\left\{\varepsilon_{t}\right\}$ and c
- Two approaches:
- Backward solution: follow sequence from past to now to find current value.
- Foward solution: start in future and work backwards to pin down path.

Backward solution

- If time starts at $-\infty$, the backward solution (if well-defined) is

$$
b_{t}=c \lambda^{t}+\sum_{j=0}^{\infty} \lambda^{j} \varepsilon_{t-j}
$$

- If time starts at 0 , the backward solution is

$$
b_{t}=b_{0} \lambda^{t}+\sum_{j=0}^{t-1} \lambda^{j} \varepsilon_{t-j}
$$

where b_{0} is a (possibly) random variable

Solution set restrictions

- Initial conditions:
- $\left\{\varepsilon_{t}\right\}$ and b_{0} are given.
- i.e., Perfect foresight $\varepsilon_{t}=0, \forall t$
- Non-explosiveness:

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} E_{t}\left(b_{t+j}\right)=0, \quad \forall t \\
& \sup _{t} V\left(b_{t}\right)<\infty
\end{aligned}
$$

Note that

$$
\begin{aligned}
E_{t}\left(b_{t+2}\right) & =E_{t}\left(E_{t+1}\left(b_{t+2}\right)\right) \\
& =E_{t}\left(\lambda b_{t+1}\right)=\lambda\left(\lambda b_{t}\right), \\
\Rightarrow E_{t}\left(b_{t+j}\right) & =\lambda^{j} b_{t} .
\end{aligned}
$$

Restrictions II

- If $|\lambda|<1$, there are many c and $\left\{\varepsilon_{t}\right\}$ where the non-explosiveness conditions do not restrict
- But if $|\lambda| \geq 1$, the only admissible solution is $\varepsilon_{t}=c=0$, so that $b_{t}=0, \forall t$
- Because if any deviation from steady-state, will explode over time.
- Note that if $|\lambda| \geq 1$, then b_{t} cannot generally satisfy both an initial condition and a non-explosiveness condition

Nonhomogeneous differential equations

- Wish to solve

$$
E_{t}\left(x_{t+1}\right)=\lambda x_{t}+z_{t}
$$

where $\left\{z_{t}\right\}$ is a stochastic forcing process.

- Generalize by adding a bubble term

$$
\begin{aligned}
& E_{t}\left(x_{t+1}-b_{t+1}\right)=\lambda x_{t}+z_{t}-\lambda b_{t} \\
\Leftrightarrow & E_{t}\left((1-\lambda L)\left(x_{t+1}-b_{t+1}\right)\right)=z_{t},
\end{aligned}
$$

where b_{t+1} is a "bubble term" that solves

$$
E_{t}\left(b_{t+1}\right)=\lambda b_{t}
$$

- i.e., a process unrelated to the fundamental term, x_{t}.

General LEDE II

- The general problem is

$$
\begin{align*}
& x_{t+1}-b_{t+1}=\lambda\left(x_{t}-b_{t}\right)+\widetilde{\eta}_{t+1}+z_{t} \\
& \widetilde{\eta}_{t+1} \equiv\left(x_{t+1}-b_{t+1}\right)-E_{t}\left(x_{t+1}-b_{t+1}\right), \\
& (1-\lambda L)\left(x_{t+1}-b_{t+1}\right)=\widetilde{\eta}_{t+1}+z_{t} \tag{GP}
\end{align*}
$$

- Goal: find the set of admissible $\left\{\widetilde{\eta}_{t}\right\}$ and $\left\{b_{t}\right\}$
- $\tilde{\eta}_{t+1}$: expectational errors.
- b_{t} : bubble term (non-fundamental value).

Backward solution

- $\left\{\widetilde{\eta}_{t}\right\}$ and $\left\{b_{t}\right\}$ cannot be identified separately
- If time starts at $-\infty$, backward solution (if well-defined) is

$$
\begin{aligned}
x_{t+1} & =\sum_{j=0}^{\infty} \lambda^{j}\left(z_{t-j}+\widetilde{\eta}_{t+1-j}\right)+b_{t+1} \\
& =\sum_{j=0}^{\infty} \lambda^{j} z_{t-j}+\widetilde{b}_{t+1} \\
\widetilde{b}_{t+1} & \equiv b_{t+1}+\sum_{j=0}^{\infty} \lambda^{j} \widetilde{\eta}_{t+1-j} .
\end{aligned}
$$

- \widetilde{b}_{t+1} is a bubble term
- Fundamental (sometimes called particular) solution is

$$
x_{t+1}=\sum_{j=0}^{\infty} \lambda^{j} z_{t-j}
$$

- i.e., must reflect sequence of shocks (stochastic forcing process).

Backwards solution II

- If time starts at 0 , the backward solution can be written as

$$
\begin{aligned}
x_{t+1}= & \sum_{j=0}^{t} \lambda^{j} z_{t-j}+\sum_{j=0}^{t} \lambda^{j} \widetilde{\eta}_{t+1-j} \\
& +\left(x_{0}-b_{0}\right) \lambda^{t+1}+b_{t+1}
\end{aligned}
$$

which becomes

$$
\begin{aligned}
x_{t+1} & =\sum_{j=0}^{t} \lambda^{j} z_{t-j}+\sum_{j=0}^{t} \lambda^{j} \eta_{t+1-j}+x_{0} \lambda^{t+1} \\
\eta_{t} & \equiv \widetilde{\eta}_{t}+b_{t}-E_{t-1}\left(b_{t}\right) \\
& =x_{t}-E_{t-1}\left(x_{t}\right)
\end{aligned}
$$

- x_{t} is stochastic, will have errors.
- b_{t} is deterministic. Cannot be wrong or will be systematic.

Forward solution

- First, rewrite

$$
(1-\lambda L)\left(x_{t+1}-b_{t+1}\right)=\widetilde{\eta}_{t+1}+z_{t}
$$

as

$$
\begin{gathered}
\left(\frac{1-\lambda L}{-\lambda L}\right)(-\lambda L)\left(x_{t+1}-b_{t+1}\right)=\widetilde{\eta}_{t+1}+z_{t} \\
\left(1-\lambda^{-1} L^{-1}\right)\left(x_{t}-b_{t}\right)=-\frac{1}{\lambda}\left(z_{t}+\widetilde{\eta}_{t+1}\right)
\end{gathered}
$$

To ensure that x_{t} is a function only of variables known at time t, write this as

$$
E_{t}\left(\left(1-\lambda^{-1} L^{-1}\right)\left(x_{t}-b_{t}\right)\right)=-\frac{1}{\lambda} E_{t}\left(z_{t}+\widetilde{\eta}_{t+1}\right)
$$

Forward solution II

- Invert the lag operator

$$
\begin{gathered}
E_{t}\left(x_{t}-b_{t}\right)=-\frac{1}{\lambda} E_{t}\left(\frac{1}{1-\lambda^{-1} L^{-1}}\left(z_{t}+\widetilde{\eta}_{t+1}\right)\right) \\
x_{t}=-\frac{1}{\lambda} E_{t}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j}\left(z_{t+j}+\widetilde{\eta}_{t+j+1}\right)\right)+b_{t}, \\
=-\frac{1}{\lambda} E_{t}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j} z_{t+j}\right)+b_{t}
\end{gathered}
$$

because $E_{t}\left(\widetilde{\eta}_{t+j}\right)=0, \forall j \geq 1$

- note: $\frac{1}{L}^{j}=L^{-j}$ subsumed into z_{t+j} (bc negative exponent on lag operator equals lead operator)

Forward solution III

- The fundamental (particular) solution is

$$
x_{t}=-\frac{1}{\lambda} E_{t}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j} z_{t+j}\right)
$$

- Note that $\widetilde{\eta}_{t}$ depends only on the forcing process z_{t}

$$
\begin{aligned}
\widetilde{\eta}_{t}=-\frac{1}{\lambda} & {\left[E_{t}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j} z_{t+j}\right)\right.} \\
& \left.-E_{t-1}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j} z_{t+j}\right)\right], \forall t
\end{aligned}
$$

Summing up

- Forward solution

$$
x_{t}=-\frac{1}{\lambda} E_{t}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j} z_{t+j}\right)+b_{t} .
$$

- Backward solution

$$
x_{t+1}=\sum_{j=0}^{\infty} \lambda^{j} z_{t-j}+\tilde{b}_{t+1}
$$

or

$$
x_{t+1}=\sum_{j=0}^{t} \lambda^{j} z_{t-j}+\sum_{j=0}^{t} \lambda^{j} \eta_{t+1-j}+x_{0} \lambda^{t+1}
$$

Restrictions

- Initial conditions:
- x_{0} and $\left\{\widetilde{\eta}_{t}\right\}_{t=1}^{\infty}$ are directly given, for example with capital accumulation

$$
k_{t+1}=(1-\delta) k_{t}+i_{t}
$$

$$
k_{0} \text { given, }
$$

$$
k_{t+1}-E_{t}\left(k_{t+1}\right)=0, \forall t
$$

- Non-Explosiveness (boundary condition):

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} E_{t}\left(x_{t+j}\right)=0, \quad \forall t \\
& \sup _{t} V\left(x_{t}\right)<\infty
\end{aligned}
$$

Solutions

- If $|\lambda|<1$, for "well-behaved" $\left\{z_{t}\right\}$ (e.g, ARMA processes), one solves $(1-\lambda L)^{-1}$ backwards to get

$$
x_{t+1}=\sum_{j=0}^{\infty} \lambda^{j} z_{t-j}+\tilde{b}_{t+1}
$$

with a large number of permissable $\left\{\tilde{b}_{t}\right\}$.

- But if $|\lambda|>1$, for "typical" $\left\{z_{t}\right\}$ (e.g, ARMA processes), we must solve $(1-\lambda L)^{-1}$ forward and set $b_{t}=0$, so that

$$
x_{t}=-\frac{1}{\lambda} E_{t}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j} z_{t+j}\right)
$$

- If $|\lambda|>1$, cannot satisfy both initial conditions and non-explosiveness

Rule of Thumb

- If $|\lambda|<1$, set

$$
x_{t+1}=\sum_{j=0}^{t} \lambda^{j} z_{t-j}+\sum_{j=0}^{t} \lambda^{j} \eta_{t+1-j}+x_{0} \lambda^{t+1}
$$

and use initial conditions to pin down x_{0} and $\left\{\eta_{t}\right\}$

- If $|\lambda|>1$, set

$$
x_{t}=-\frac{1}{\lambda} E_{t}\left(\sum_{j=0}^{\infty}\left(\frac{1}{\lambda}\right)^{j} z_{t+j}\right) .
$$

- If $|\lambda|=1$, consider case by case

Next Time

- Discuss rational expectations and Lucas Critique.
- See my webpage for new homework.

