Macro II

Professor Griffy

UAlbany

Spring 2021

Introduction

- There is a new homework (hopefully) posted today.
- Please turn it in by next Wednesday.
- Today:
 - Talk about Lucas Critique and Rational Expectations
 - Use simple two period model
 - Show intuition behind Lucas Critique.
 - (unrelated) review of log-linearization.
- ► Lecture largely based on Eric Sims' (Notre Dame) notes.

Lucas Critique Overview

- Some history:
 - Prior to the late 1970s, macroeconomists had no systematic way of modeling consumer expectations.
 - ► They found *empirical relationships* between *equilibrium objects* and interpreted these as causal.
 - This is a problem!
 - (Old) Phillips Curve: inverse relationship between inflation and unemployment
 - \blacktriangleright more money \rightarrow more demand \rightarrow more employment.
 - This led policy makers to institute persistent inflation.
 - But this broke down in the 70s: we had stagflation: inflation and unemployment.
 - The reason is that consumers came to expect an increase in prices and adjusted their demand.
- Lucas Critique (broadly):
 - ▶ Need to use "deep" (structural) parameters to inform policy.
 - Otherwise policy may affect these parameters.

A (very) basic consumption-savings model:

$$\max_{c_1, c_2} u(c_1) + \beta u(c_2)$$
(1)
s.t. $c_1 + \frac{c_2}{1+r} = w_1 + \frac{w_2}{1+r}$ (2)

Simple set-up:

- Household faces an endowment w₁, w₂, which are known and fixed.
- r is fixed over time, household takes as given.
- Standard definitions for $u: u' > 0, u'' < 0, u'(0) = \infty$

A (very) basic consumption-savings model:

$$V = \max_{c_1, c_2} u(c_1) + \beta u(c_2)$$
(3)

s.t.
$$c_1 + \frac{c_2}{1+r} = w_1 + \frac{w_2}{1+r}$$
 (4)

Solve by first finding the Euler Equation:

$$\frac{\partial V}{\partial c_1} = u'(c_1) - \lambda = 0 \tag{5}$$

$$\frac{\partial V}{\partial c_2} = \beta u'(c_2) - \frac{\lambda}{1+r} = 0$$
 (6)

$$\rightarrow u'(c_1) = \beta(1+r)u'(c_2) \tag{7}$$

We know dynamics, now need to pin down c_t using budget constraint (boundary condition).

Dynamics and budget:

$$u'(c_1) = \beta(1+r)u'(c_2)$$
 (8)

s.t.
$$c_1 + \frac{c_2}{1+r} = w_1 + \frac{w_2}{1+r}$$
 (9)

• Assume log utility:
$$u(c) = ln(c)$$
.

This yields

$$\frac{1}{c_1} = \beta (1+r) \frac{1}{c_2}$$
(10)
$$c_1 = \frac{1}{1+\beta} (w_1 + \frac{w_2}{1+r})$$
(11)

What does this tell us?

$$c_1 = \frac{1}{1+\beta} (w_1 + \frac{w_2}{1+r}) \tag{12}$$

- This tells us that consumption today is a function of
 - income today (not surprising)
 - income in the future (possibly a problem)
- Suppose there is a recession.
- A policymaker wants to implement a tax cut based on empirical evidence

$$c_1 = \frac{1}{1+\beta} (w_1 + \frac{w_2}{1+r}) \tag{13}$$

Policymaker:

Run the following regression:

$$c_1 = \alpha + \gamma w_t + u_t \tag{14}$$

- Want to stimulate the economy.
- Give people money, consumption will increase by γ !

$$c_{1} = \frac{1}{1+\beta} (w_{1} + \frac{w_{2}}{1+r})$$
(15)
$$\hat{c_{1}} = \alpha + \gamma w_{t}$$
(16)

► Assume
$$\frac{\partial w_2}{\partial w_1} = 0$$
 (i.e., uncorrelated). Then

$$\frac{\partial c_1}{\partial w_1} = \frac{1}{1+\beta}$$
(17)

$$\frac{\partial \hat{c}_1}{\partial w_1} = \alpha$$
(18)

• In this context, $\alpha = \frac{1}{1+\beta}$. We're good!

$$c_{1} = \frac{1}{1+\beta} (w_{1} + \frac{w_{2}}{1+r})$$
(19)
$$\hat{c_{1}} = \alpha + \gamma w_{t}$$
(20)

• Assume
$$\frac{\partial w_2}{\partial w_1} = 0$$
. Then

$$\frac{\partial c_1}{\partial w_1} = \frac{1}{1+\beta} \left(1 + \frac{\frac{\partial w_2}{\partial w_1}}{1+r}\right)$$
(21)
$$\frac{\partial \hat{c}_1}{\partial w_1} = \alpha$$
(22)

If income was positively correlated (AR, etc.), we're not going to get the response we want.

Lucas critique overview

- In this context, policymakers might over predict the response of consumption.
- Why? Because consumers understand that this is a temporary increase in income.
- ▶ They won't believe that w₂ will increase.
- Therefore, they will respond less than predicted by the model.
- This is the crux of the Lucas Critique: that you need to find deep parameters that don't change with consumer behavior.

Lucas critique

- Lucas made his critique in the context of monetary policy.
- There had been multiple decades of inflation, aimed at reducing unemployment.
- Consumers eventually built in the expectation of inflation and this empirical relationship no longer held.
- Let's use a simple monetary policy model to understand what happened.

Phillips Curve

Suppose that inflation is characterized by the following difference equation:

$$\pi_t = \theta(u_t - u^*) + \beta \mathbb{E}(\pi_{t+1})$$
(23)

- What does this tell us?
 - If we hold expectations fixed,
 - an increase in current inflation, π_t ,
 - leads to a θ reduction in unemployment (in percentage points).
- θ was observed to be negative, ie inflation reduced unemployment.

Policymaker

$$\pi_t = \theta(u_t - u^*) + \beta \mathbb{E}(\pi_{t+1})$$
(24)

Suppose that an econometrician ran the following specification:

$$\pi_t = \gamma(u_t - u^*) + \epsilon_t \tag{25}$$

- They conclude that $\gamma < 0$.
- They tell the policymaker to raise inflation to reduce unemployment.

What happens?

$$\pi_t = \theta(u_t - u^*) + \beta \mathbb{E}(\pi_{t+1})$$
(26)
$$\pi_t = \gamma(u_t - u^*) + \epsilon_t$$
(27)

- Well, as long as expectations don't change, the empirical specification will appear to hold.
- But if they change, consequences!
- An increase in inflation can lead to one of two things:
 - 1. a decrease in unemployment (good!) or
 - 2. an increase in expected future inflation
- and the equation will still hold.
- This is what we saw in the 1970s/1980s.

Log linearization

- Non-linear difference equations are tricky to solve.
- Macroeconomists often log-linearize these difference equations to make them easier to solve.
- Basic idea:
 - In some area around the steady state, deviations are small.
 - Can approximate using a log-linearized version of the model.
 - Will be "wrong," but close as long as deviations stay small.
- ► Today, short refresher.

Log linearization II

► Take a generic difference equation with a single variable *x*:

$$x_{t+1} = A x_t \tag{28}$$

▶ Suppose that *A* = 1 + *g*:

$$x_{t+1} = (1+g)x_t$$
 (29)

Taking logs of both sides:

$$ln(x_{t+1}) = ln(1+g) + ln(x_t)$$
(30)

Taylor Series Approximation

A first-order taylor approximation of a function f(x) around a point x* is given by

$$f(x) \approx f(x^*) + f'(x^*)(x - x^*)$$
 (31)

- If $(x x^*)$ is small and f'' is not too large, this approximation is reasonable.
- Idea: we know the value of a function at a particular point
- We can also find the derivative at that point.

Applying this to log-linear approximation

► Taylor series approximation of growth rate (1 + g) at g = 0:

$$ln(1+g) \approx ln(1+0) + rac{1}{1+0}(1+g-1)$$
 (32)
 $\approx g$ (33)

 This means that we can approximate our difference equation as

$$ln(x_{t+1}) = ln(1+g) + ln(x_t)$$
(34)

$$\approx \ln(x_t) + g \tag{35}$$

This insight will prove very useful in solving macro models.

Next Time

- Start dynamic programming.
- You guys:
 - Two homeworks (both should be relatively short).
- Due next Wednesday (2/24).