Macro II

Professor Griffy

UAlbany

Spring 2021

Introduction

- Today: Asset pricing
- The "Lucas Tree Model."
- New homework today/tomorrow.
- No class Wednesday.

Rational Expectations Competitive Equilibrium

Definition: Given the set of exogenous stochastic processes $\left\{x_{t}\right\}$, and initial conditions a_{0}, a rational expectations equilibrium is a set of stochastic processes for prices $\left\{p_{t}\right\}$ and quantities $\left\{q_{t}\right\}$ such that:

- Given $\left\{p_{t}\right\},\left\{q_{t}\right\}$ is consistent with optimal behavior on the part of consumers, producers and (if relevant) the government.
- Given $\left\{p_{t}\right\},\left\{q_{t}\right\}$ satisfies the government's budget constraints and borrowing restrictions.
- $\left\{p_{t}\right\}$ satisfies any market-clearing conditions.

Lucas Tree Overview

- We are given equilibrium quantities and equilibrium demand functions-back out equilibrium prices.
- We know the function $\mathrm{D}(\mathrm{p})$ and the quantity q_{0} : now find p_{0}.

Compare with Literature on Consumption

- Consumption: Take rates of return as given, solve for consumption.
- Asset Pricing: Take consumption as given, solve for rates of return.

Model Structure

- Preferences: n identical consumers, maximizing

$$
\begin{aligned}
& E_{0}\left(\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right) \\
& \beta \in(0,1), \quad u^{\prime}(\cdot)>0, \quad u^{\prime \prime}(\cdot) \leq 0
\end{aligned}
$$

- Endowment: one durable "tree" per individual. Each period, the tree yields some "fruit" ($d_{t} \equiv$ dividends).
- Technology: Fruit cannot be stored. Dividends are exogenous and follow a time-invariant Markov process

$$
\operatorname{Pr}\left(d_{t+1} \leq y \mid d_{t}=x\right)=F(y, x), \forall t
$$

with density $f(y, x)$.

Solution strategy

- Find the competitive equilibrium allocation via the social planner's problem. Assume equal weights on each person's utility (parallel to equal endowments).
- i.e., use welfare theorems.
- Calculate the FOC for individuals with the opportunity to buy/sell specific assets.
- Evaluate FOC at the competitive equilibrium allocation.

Step 1: Social planner's problem

- Use a representative agent
- Social planner solves

$$
\begin{gathered}
\max _{\left\{c_{t}\right\}_{t=0}^{\infty}} E_{0}\left(\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)\right) \\
\text { s.t. } \quad c_{t} \leq d_{t} .
\end{gathered}
$$

- Solution: $c_{t}=d_{t}, \forall t$ (non-storable good!).
- What does this mean?

Definitions

$c_{t}=$ consumption,
$p_{t}=$ price of a tree $=$ price of stock,
$x_{t}=$ total resources
$s_{t+1}=$ number of trees/shares of stock,
$R_{t}=$ gross return on one-period risk-free bond,
$R_{t}^{-1}=$ price of a one-period, risk-free discount bond,
$b_{t+1}=$ risk-free discount bonds.

Step 2: Representative consumer's problem

$$
\begin{aligned}
\max _{\left\{c_{t}, b_{t+1}, s_{t+1}\right\}_{t=0}^{\infty}} & E\left(\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) \mid I_{0}\right) \\
\text { s.t. } \quad & c_{t}+p_{t} s_{t+1}+R_{t}^{-1} b_{t+1}=x_{t} \\
& x_{t}=\left(p_{t}+d_{t}\right) s_{t}+b_{t} \\
& \lim _{J \rightarrow \infty} \beta^{J} E_{t}\left(u^{\prime}\left(c_{t+J}\right) p_{t+J} s_{t+J+1}\right)=0 \\
& \lim _{J \rightarrow \infty} \beta^{J} E_{t}\left(u^{\prime}\left(c_{t+J}\right) b_{t+J+1}\right)=0
\end{aligned}
$$

s_{0}, b_{0} given

- where I_{0} is the information set at time 0 .

Consumer's problem

- Consumer i picks c_{t}^{i}, b_{t+1}^{i} and s_{t+1}^{i} on the basis of

$$
l_{t}^{i}=\left\{\begin{array}{l}
\left\{d_{t-m}, p_{t-m}, R_{t-m}\right\}_{m=0}^{t}, \\
\left\{s_{t+1-m}^{j}, b_{t+1-m}^{j}\right\}_{m=0}^{t+1}, \forall j \neq i, \\
\left\{c_{t-m}^{j}, x_{t-m}^{j}\right\}_{m=0}^{t}, \forall j \neq i, \\
\left\{s_{t-m}^{i}, b_{t-m}^{i}, x_{t-m}^{i}\right\}_{m=0}^{t},\left\{c_{t-m}^{i}\right\}_{m=1}^{t},
\end{array}\right\}
$$

- It turns out that d_{t} summarizes the state of the aggregate economy, with $p_{t}=p\left(d_{t}\right)$ and $R_{t}=R\left(d_{t}\right)$.
- It is the only stochastic variable, and aggregate resources equal d_{t}.
- Because d_{t} is a time-invariant Markov process, the consumer's problem is time-invariant

Recursive formulation

Bellman's functional equation:

$$
\begin{aligned}
& V\left(x_{t}, d_{t}\right)= \\
& \min _{\lambda_{t} \geq 0 c_{t} \geq 0, s_{t+1}, b_{t+1}} u\left(c_{t}\right)+\lambda_{t}\left(x_{t}-c_{t}-p_{t} s_{t+1}-R_{t}^{-1} b_{t+1}\right) \\
& \quad+\beta \int V\left(\left(p\left(d_{t+1}\right)+d_{t+1}\right) s_{t+1}+b_{t+1}, d_{t+1}\right) d F\left(d_{t+1}, d_{t}\right)
\end{aligned}
$$

- The FOC for an interior solution are:

$$
\begin{aligned}
u^{\prime}\left(c_{t}\right) & =\lambda_{t} \\
\lambda_{t} p_{t} & =\beta \int \frac{\partial V[t+1]}{\partial x_{t+1}}\left(p\left(d_{t+1}\right)+d_{t+1}\right) d F\left(d_{t+1}, d_{t}\right) \\
\lambda_{t} R_{t}^{-1} & =\beta \int \frac{\partial V[t+1]}{\partial x_{t+1}} d F\left(d_{t+1}, d_{t}\right)
\end{aligned}
$$

Euler Equations

- Note that (by Benveniste-Scheinkman)

$$
\frac{\partial V[t]}{\partial x_{t}}=\lambda_{t}
$$

so that

$$
\begin{aligned}
p_{t} & =\beta E_{t}\left(\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\left(p_{t+1}+d_{t+1}\right)\right), \\
R_{t}^{-1} & =\beta E_{t}\left(\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right) .
\end{aligned}
$$

Step 3: Equilibrium

- Intuition
- Agents allocate resources based on beliefs about future prices and consumption
- These decision rules determine processes for market clearing prices and quantities.
- In a rational expectations equilibrium, the actual processes must be consistent with the beliefs.
- Sequential definition: Given the stochastic process $\left\{d_{t}\right\}_{t=0}^{\infty}$ and the initial endowments $s_{0}=1$ and $b_{0}=0$, a rational expectations equilibrium consists of the stochastic processes $\left\{c_{t}, s_{t+1}, b_{t+1}, p_{t}, R_{t}\right\}_{t=0}^{\infty}$ such that:
- Given the process for prices $\left\{p_{t}, R_{t}\right\},\left\{c_{t}, s_{t+1}, b_{t+1}\right\}$ solves the consumer's problem.
- All markets clear: $c_{t}=d_{t}, s_{t+1}=1$, and $b_{t+1}=0, \forall t$.
- Recursive definition: given the random variable d_{0}, the conditional distribution $F\left(d_{t+1}, d_{t}\right)$, and the initial endowments $s_{0}=1$ and $b_{0}=0$, a recursive rational expectations equilibrium consists of pricing functions $p(d)$ and $R(d)$, a value function $V(x, d)$, and decision functions $c(x, d), s(x, d)$, and $b(x, d)$ such that:
- Given the pricing functions $p(d)$ and $R(d)$, the value and policy functions $V(x, d), c(x, d), s(x, d)$, and $b(x, d)$ solve the consumer's problem.
- Markets clear: for $x=p(d)+d, c(x, d)=d, s(x, d)=1$, and $b(x, d)=0$.

Backing out prices

- Find $R\left(d_{t}\right)$: impose the equilibrium allocation, $c_{t}=d_{t}$, to get

$$
\begin{align*}
R_{t}^{-1} & =\beta E_{t}\left(\frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}\right) \\
& =\beta \frac{1}{u^{\prime}\left(d_{t}\right)} E_{t}\left(u^{\prime}\left(d_{t+1}\right)\right) . \tag{EE}
\end{align*}
$$

- Find $p\left(d_{t}\right)$: impose the equilibrium allocation, $c_{t}=d_{t}$, to get

$$
\begin{equation*}
p_{t}=\beta E_{t}\left(\frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}\left(p_{t+1}+d_{t+1}\right)\right) . \tag{EE'}
\end{equation*}
$$

Bond Price

- Recall equation (EE):

$$
\begin{align*}
R_{t}^{-1} & =\beta \frac{1}{u^{\prime}\left(d_{t}\right)} E_{t}\left(u^{\prime}\left(d_{t+1}\right)\right) \tag{EE}\\
R_{t} & =\frac{u^{\prime}\left(d_{t}\right)}{\beta E_{t}\left(u^{\prime}\left(d_{t+1}\right)\right)}
\end{align*}
$$

- The price of a discount bond increases (return falls) in β.
- The price increases (return falls) in expected future marginal utility, and decreases in current marginal utility: reflects consumption smoothing motive.
- Recall from last time: implies that more uncertainty raises bond price if convex preferences.

Stock prices

- Recall equation (EE'):

$$
p_{t}=\beta E_{t}\left(\frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}\left(p_{t+1}+d_{t+1}\right)\right) .
$$

- Define the expected rate of return on stocks as

$$
E_{t}\left(R_{t}^{s}\right)=E_{t}\left(\frac{p_{t+1}+d_{t+1}}{p_{t}}\right)
$$

Equity premium

- The expected rate of return on stocks is

$$
E_{t}\left(R_{t}^{s}\right)=E_{t}\left(\frac{p_{t+1}+d_{t+1}}{p_{t}}\right)
$$

- Recall that

$$
E_{t}(X Y)=E_{t}(X) E_{t}(Y)+C_{t}(X, Y)
$$

- Rewrite (EE ${ }^{\prime}$):

$$
\begin{aligned}
1 & =\beta E_{t}\left(\frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}\left(\frac{p_{t+1}+d_{t+1}}{p_{t}}\right)\right) \\
& =\beta E_{t}\left(\frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)} R_{t}^{s}\right) \\
& =\beta E_{t}\left(\frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}\right) E_{t}\left(R_{t}^{s}\right)+C_{t}\left(\beta \frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}, R_{t}^{s}\right)
\end{aligned}
$$

Risk premium

- Insert (EE) and rearrange:

$$
\begin{aligned}
1 & =R_{t}^{-1} E_{t}\left(R_{t}^{s}\right)+C_{t}\left(\beta \frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}, R_{t}^{s}\right) \\
E_{t}\left(R_{t}^{s}\right) & =R_{t}-R_{t} C_{t}\left(\beta \frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}, R_{t}^{s}\right) \\
& =R_{t}-\frac{u^{\prime}\left(d_{t}\right)}{\beta E_{t}\left(u^{\prime}\left(d_{t+1}\right)\right)} C_{t}\left(\beta \frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}, R_{t}^{s}\right), \\
& =R_{t}-\frac{C_{t}\left(u^{\prime}\left(d_{t+1}\right), R_{t}^{s}\right)}{E_{t}\left(u^{\prime}\left(d_{t+1}\right)\right)} .
\end{aligned}
$$

- The expected return on stocks equals the return on the risk-free bond plus the risk-premium, which is $-\frac{C_{t}(\cdot, \cdot)}{E_{t}(\cdot)}$.

Equity premium: a puzzle?

- If the covariance $C_{t}(\cdot, \cdot)$ is negative, which we normally expect, there is an equity premium.
- Interpretation
- The most desirable assets yield well when marginal utility is high $\left(C_{t}(\cdot, \cdot)>0\right)$. Risk-aversion means that agents prefer assets that act like insurance.
- Investors are willing to sacrifice return if $C_{t}(\cdot, \cdot)>0$, and they will demand higher returns if $C_{t}(\cdot, \cdot)<0$.
- Mehra and Prescott (1985): the observed equity premium is difficult to reconcile with this formula.

Equity premium: a puzzle?

- Mehra and Prescott (1985): the observed equity premium is difficult to reconcile with this formula.

Conclusion

- No class on Wednesday.
- New homework posted tonight, due next Wednesday.

