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6 Appendix A - Hansen’s Model

Hansen (1985) writes a model that includes utility over consumption and the intensive margin
of labor with stochastic shocks to production. Then, we can formulate his problem in the
following way:

EY BlIn(C) — vH] (6.1)
=0

subject to
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Y = AKE (' H)T? 6.2)

In(Ar) = (1—p)In(A) +pln(Ar1) +e €~ N(0,07) (6.3)
Y, =Ci+ I (6.4)
Kit1 = (1=6)Ks + I (6.5)
Taking the first order in C;, Hy and I; yields:
oL Kt o t1-0), _
S5 =~ A= ) A 1] =0
oL 1
ac, —¢ M0
oL n'Hi\q g
t t

We have included 7 as a labor-augmenting growth factor. We can combine these first
order conditions to remove the Lagrange multiplier and get a system of six equations from
which we will get our solution:

_1iq Kt o t1-0)
1 1 N He11
— = BE|—— (A — +1-96 6.7
c p [Ct+1( r1( Kt ) )] (6.7)

Now, we detrend by taking out the growth factor 1 to get a system of equations from (6.2
-6.7):

y = akn~? (6.8)

In(a;) = (1—p)In(A) + pln(a;—1) + € (6.9)
Yi = ct + it (6.10)

ki1 = (1= 0)kt + i (6.11)

yeihy = (1 —0)y; (6.12)

L pE (0l +1-9) (613)
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7 Appendix B - Steady State Values

Our goal is to log-linearize this system of equations around the steady-state; in order to
accomplish this, we must first find steady-state values of each of these variables. We first find
the steady state level of the shocks:

In(a*) = (1 - p)In(A) + pln(a")

= In(a*) =In(A) (7.1)

To find the rest of the variables, we first suppose that we know some value for steady-state
y; then we solve for k using (6.13):

1 g0 ) +1-0)]

c*: c* Nk
N_g¥ 4
:>/3_9k*+1 0
Sk = () 72)
- %—1+(Sy '

Using equation (6.11) with this above steady-state result, we can solve for steady state
investment:

k" = (1—8)k* +i*
= (p—140)k =1

0(n —1+9)

=i = * 7.3
We use (6.10) to find steady-state consumption:
y* = c* + i*

=ct=M1-(=L—"" 74

== (e 7.4

We use (6.12) to find h*:
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8

0(n—1+9)

:’Y[l_< 7
T-1+0

Ny = (1-0)y
0(n —1+06)

-1
I ) (7.5)

== (=

Finally, we use (6.8) to find steady state output:

y* — a*k*eh*l—e
V=i - <—9(%’7_‘llj e
-6 0 1-0 0(n—14+0),_1,1—
y' 0 =a (%_1+5)6[( y )[1_(W)] e
= I - 76

Appendix C - Log-Linearizing Around the Steady-State

Using these equations, we can now log-linearize around the steady-state: we define %; =
In(x;) — In(x) and can think about this as deviations about the steady state. Because we
expect the detrended economy to rarely stray far from these steady-state values, we think
that this linear approximation will do a relatively good job approximating the equilibrium
conditions at the benefit of much simplicity.

We first wish to rewrite ¥; = In(x;) — In(x) in two convenient ways:
- Xt
% =In(—
= ()
Then, the first-order Taylor Approximation to this equation yields:
oxy

X = ft(X) + a—xt(x)(xt — X)

= X

12

(1) + ()

Rearranging this yields:

X(ft + 1) e (81)

We can also rewrite the equation for ¥; as

xp = xe™ (8.2)
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Using (8.1 - 8.2), we will be able to log-linearize equations (6.8 - 6.13) around the steady-
state values given by (7.1 - 7.6). Starting with equation (6.8):

In(ye) = In(a;) + 6In(k:) + (1 —0)In(hy)

In(y) = In(a) +6In(k) + (1 —0)In(h)

= s = In(ys) — In(y) = In(as) + 0In(ks) + (1 — 0)In(hy) — (In(a) + 0ln(k) + (1 — 0)In(h))

Using (6.9), we get the deviations for a;:

In(a;) = (1 —p)In(A) + pln(a;—1) + €
In(a) = (1—p)In(A) + pln(a)

= d; = Pﬁt—l + € (84)
From (6.10),

yt:Ct+it

We use the approximation from (8.1):
y(Gr+1) = c(@ +1) +i(i +1)

g—£~_|_i{
t yt yt

Here, we use the steady-state values for ¢, i and y to get

O(n—1+6 0(y—1+6
R R =l
t= ¢t + It

y

<

(L 14 6)y g =L —146—00p—1+0))c+0(y—1+6)is (8.5)

p B

Now we use (6.11) to get the transition of k in log-linearized terms:

ﬂkt-i—l = (1 — 5)kt + it

= nk(kpy1 +1) = (1= 0)k(ks +1) +i(i; +1)
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- - i+ 1
=>’7kt+1=(1—5)kt+Elt+(1—5)+%—’7

Subbing in for the steady-state values of i and k, we get:

0(—146)\ . « 0(7—146)\, «
L ( 1110 " B ( 117 )y B
ki = 1=k + ——F———it+(1-0)+——F———1
(W)y (%,Hﬂy
= yki1 = (1- Ok + (4 — 1+ 8)i (8.6)

Moving to (6.12), we get:

yeihy = (1 —0)y:

= Y = cthy

Y
1-6
= In(yy) = In(y) —In(1 —0) +In(c¢) + In(hy)

and around the steady-state,

= In(y) = In(y) —In(1 —06) + In(c) + In(h)

Then, subtracting these two, we get
g =In(y) —In(y) = In(y) —In(1—0) +In(c) +In(h) —In(y) —In(1 —0) + In(c) + In(h)

= =&+ hy (8.7)

Finally, we use the Euler equation (6.13) along with the alternative representation of the
log-deviation (8.2):

T pE [ (0(Y 41— )]

Ct - Ct+1 ki1
Ui B 1 ye?wl _
= i = PRl (e(ke’?m )+1-9)]

= %e—@ — E[e—5t+1(9%e?t+1e—f<t+1 11— (5)]
Using (8.1), we know e % & (1 — %)

k

Since we believe that deviations from the steady-state will be relatively small once we
account for the trend, terms of the type ¥;Z; are approximately zero:

%U—@)ZEWffHﬂwzﬂ+?HﬂU—%Hﬂ+1—®]
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(1—&)=E[(1- 5t+1)(9%(1 + 1 — k1) +1-0)]

™I

= %(1 - C~t) = E[G%(l +gt+1 - I~Ct+1) + 1-— 5 - 5t+19% - 5t+1 + 55t+1]

Now, we sub in for the steady-state value of k:

ﬁ(1 —G) = E[9+(1 + Grs1 — k1) +1—6— 5t+19+ — 1+ 0Cr41]
B )Y )Y
= %(1—@) = E[(% 14 8)(1+ Frgr — Keyr) +1 -6 — <% — 14 8)841 — Gt + 68141]
_ s n_ o — ) — 1a
0= ﬁct + E[(ﬁ 1+0)(Fr1 t+1) ﬁCt+1] (8.8)
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