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Introduction

I So far: building tools to think about dynamic models.

I Now (and mostly rest of class):

I Build on those tools to make more applicable to economics.

I Use those tools to model the macroeconomy

I Today:

I Introduce dynamic programming

I Homework due in one week.

I I may be out of town next Thursday. Will let you know
whether virtual or canceled.



Dynamic Programming

I Basic idea:

I We can express macro models in a sequential form.

I If we can write them recursively, we get access to more tools
to solve them.

I We will start with a generic representation, give some
important theorems, then discuss its use.



Sequential Problem

I We can broadly state most macro (and economics problems in
general) as

sup{xt+1}∞t=0

∞∑
t=0

βtr(xt , xt+1)

s.t. xt+1 ∈ Γ(xt), t = 0, 1, 2, ...
x0 ∈ X given

I A solution tells us xt at any time t.



Recursive Problem

I We want to write the sequential problem recursively

v(x) = supy∈Γ(x)[r(x , y) + βv(y)],∀x ∈ X .

I We can also find solutions to this problem that solve the
sequential problem.

I We can make statements about the existence and uniqueness
of those solutions.

I These statements are often easier when expressed this way.



Some definitions

I Metric space: a set S together with a metric (distance
function), ρ : S × S ⇒ R , such that for all x , y , z ∈ S:

1. ρ(x , y) ≥ 0, equality iff x = y

2. ρ(x , y) = ρ(y , x)

3. ρ(x , z) ≤ ρ(x , y) + ρ(y , z)
I Complete metric space: A metric space (S, ρ) is complete if

every Cauchy sequence converge to an element in S.

I Cauchy sequnce: a sequence {xn}|∞n=0 for which
ρ(xn, xm) < ε, any ε > 0 for n,m ≥ Nε

I i.e., a sequence that gets closer and closer together (think of a
model converging to equilibrium).



Contraction Mapping

I If (S, ρ) is a complete metric space and T : S ⇒ S is a
contraction mapping with modulus β, then

1. T has exactly one fixed point v in S, and

2. for any v0 ∈ S, ρ(T nv0, v) ≤ βnρ(v0, v), n = 0, 1, 2, ...



Blackwell’s Sufficient Conditions

I Let X ⊆ R l , and let B(X) be a space of bounded functions
f : X ⇒ R , with the sup norm. Let T : B(X) ⇒ B(X) be an
operator satisfying

1. (monotonicity) f , g ∈ B(X) and f (x)g(x), for all x ∈ X ,
implies (Tf )(x) ≤ (Tg)(x), for all x ∈ X ;

2. (discounting) there exists some β ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf )(x) + βa, all f ∈ B(X), a ≥ 0, x ∈ X



Blackwell’s Sufficient Applied

I Simple problem:

(Tv)(k) = max
0≤y≤f (k)

{U[f (k)− y ] + βv(y)}

I Monotonicity: f , g ∈ B(X) and f (x)g(x), for all x ∈ X ,
implies (Tf )(x) ≤ (Tg)(x), for all x ∈ X ;

I define g(x) ≥ v(x), then

(Tg)(k) = max
0≤y≤f (k)

{U[f (k)− y ] + βg(y)}

≥ max
0≤y≤f (k)

{U[f (k)− y ] + βv(y)}

= (Tv)(k)

I To see, take difference. g(y) ≥ v(y) → monotone.



Blackwell’s Sufficient Applied

I Simple problem:

(Tv)(k) = max
0≤y≤f (k)

{U[f (k)− y ] + βv(y)}

I (discounting) there exists some β ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf )(x) + βa, all f ∈ B(X), a ≥ 0, x ∈ X

(Tv)(k + a) = max
0≤y≤f (k)

{U[f (k)− y ] + β[v(y) + a]}

= max
0≤y≤f (k)

{U[f (k)− y ] + βv(y) + βa}

= (Tv)(k) + βa

I Thus, contraction mapping. Existence and uniqueness.



Theorem of the Maximum

I Broadly stated, the problem we face is

(Tv)(x) = supy [F (x , y) + βv(y)]
s.t. y feasible given x

I This is just a value function

I With a specified constraint.



Correspondences
I We will define a correspondence Γ(x) as

I a set of feasible values of y ∈ Y for x ∈ X ,

I where X can be thought of as the set of possible states

I and Y the set of possible choices.

I The easiest example: the budget constraint.

I There are many feasible choices,

I we will pick on the maximizes the return function.

I Argmax correspondence:

I We define a policy function G(x) as a correspondence, where

I G(x) = {y ∈ Γ(x) : f (x , y) = h(x)}



Compact Sets

I A compact set is a set that
1. is closed: contains all of its limit points.

2. is bounded: all points are within a finite distance of each other.
I Useful: most often applied to choice sets.

I Means that choices are finite and feasible.



Upper and Lower Hemi-Continuity
I Two notions of continuity, (really) loosely:

1. Upper hemi-continuity: any choice y is in the set Γ(x) (closed).
2. Lower hemi-continuity: nearby x are in Γ(x).

I Lower hemi-continuity: x2 not lhc
I Upper hemi-continuity: x1 not uhc



Upper and Lower Hemi-Continuity

I Upper hemi-continuity is useful:

I Upper hemi-continuity preserves compactness:

I if C ⊆ X is compact and Γ is uhc,

I Γ(C) is compact.

I So if we place restrictions on X , our choice set is still in the
correspondence.

I Allows our maximization problems to have solutions.

I If Γ is single-valued and uhc, it is continuous.



Theorem of the Maximum
I (conditions): Let X ⊆ R l and Y ⊆ Rm, let f : X × Y ⇒ R be

a continuous function, and let Γ : X ⇒ Y be a
compact-valued and continuous correspondence.

I (implications): Then the function: h : X → R defined as
h(x) = maxy∈Γ(x) f (x , y) and the correspondence G : X ⇒ Y
defined as G(x) = {y ∈ Γ(x) : f (x , y) = h(x)} is

1. nonempty,

2. compact-valued, and

3. upper hemi-continuous.
I Why is this useful?

I under a few more assumptions (Γ is convex, f is strictly
concave in y)

I we can obtain the maxmized value of f using the control g .
I and as a result, h(x).



Stochastic Dynamic Programming
Returning to our initial definition, let r be the return function and
u the control vector with a state that evolves by
xt+1 = h(xt , ut , εt+1). The sequential problem looks like

max
{ut}∞t=0

E0

∞∑
t=0

βtr(xt , ut)

s.t. xt+1 = h(xt , ut , εt+1) ∀t, x0 given.

I where εt is some stochastic process (“shock”) with a defined
support and some distribution function F (ε)

I we usually take this to be independent and identically
distributed or Markov.



The Equilibrium

What is the equilibrium in this environment? What are the
equilibrium objects?

I A sequence {ut}∞t=0 for every possible sequence of realizations
for ε’s

I This is not so bad insofar as, at any given point in time, the
problem has an infinite horizon and looks the same

I The above can be unwieldy, so we can instead find a policy
function that tells the agent, at any point in time, what they
should do given some observed xt considering what they
expect the ε’s to be in the future



The Recursive Problem
Now let’s translate this into a recursive problem.

V (x) = max
u

{
r(x , u) + βE

[
V
(

h(x , u, ε′)︸ ︷︷ ︸
x ′

)
|x
]}

where E
[
V
(
h(x , u, ε′)

)
|x
]
≡

∫
ξ

V
(
h(x , u, ε′)

)
dF (ε′)

How do we solve this? The obvious way: FOCs:

dV (x)
du = 0 : r2(x , u) + β

d
duE

[
V
(
h(x , u, ε′)

)
|x
]
= 0

What allows us to pass the derivative through the expectation?



Differentiation under Integration

If the limits of integration do not depend on the control u, we can
directly apply Leibniz’s rule for differentiation under the integral
(i.e., you just do it).

r2(x , u) + βE
[

dV (h(x , u, ε′))
dx ′ h2(x , u, ε′)

∣∣x] = 0

Alas, another roadblock: we do not know what dV (x ′)/dx ′ is.
Now we’ll want to apply the Envelope Theorem. That is, we’ll
want to find dV (x)/dx .



Envelope Theorem
I The envelope theorem always seems to be a source of

confusion.
I It states (loosely) that when we are maximizing a value

function V with a choice x , we can proceed as though all
other choices are at their optimal values.

I Why is this important? Because in principle, u affects the
choice of u′.

r2(x , u) + βE
[

dV (h(x , u, ε′))
dx ′ h2(x , u, ε′)

∣∣x] = 0

r2(x , u) + βE[(r1(x ′, u′)

+ (r2(x ′, u′) + βE
∂V
∂u′ h2(x ′, u′, ε′′))

∂u′

∂x )h2(x , u, ε′)
∣∣x ] = 0

r2(x , u) + βE[(r1(x ′, u′)

+
((((((((((((((((

(r2(x ′, u′) + βE
∂V
∂u′ h2(x ′, u′, ε′′))

∂u′

∂x )h2(x , u, ε′)
∣∣x ] = 0

I We can cancel future terms because we optimally pick u′

I i.e., we plug in g(x) for u.



Envelope Theorem II
If the problem we are working with can be written in such a way
such that the transition does not depend on x , this can be greatly
simplified to

dV (x)
dx = r1(x , u) =⇒ dV (x ′)

dx ′ = r1(x ′, u′).

Plugging this back into the FOC gives the stochastic EE.

r2(x , u) + βE
[
r1(x ′, u′)h2(x , u, ε′)

∣∣x] = 0

Now: return to neoclassical growth. Suppose that capital evolves
according to k ′ = (1 − δ)k + a + ε (where ε is iid), and that there
is full depreciation (δ = 1).



Stochastic Neoclassical Growth

V (k, ε) = max
c,k′

{
ln(c) + βE

[
V (k ′, ε′)

]}
s.t. c = kα − k ′ + ε

=⇒ V (k, ε) = max
k′

{
ln(kα − k ′ + ε) + βE

[
V (k ′, ε′)

]}

The FOC is given by

1
kα − k ′ + ε

= βE
[

dV (k ′, ε′)

dk ′

]
,

where we passed the derivative through the integral using Leibniz’s
rule.



Solving
Now for the Envelope Theorem.

dV (k, ε)
dk =

αkα−1

kα − k ′ + ε
=⇒ dV (k ′, ε′)

dk ′ =
αk ′α−1

k ′α − k ′′ + ε′

Plugging this back into the FOC, we have the EE (which we can
rewrite however we want).

1
kα − k ′ + ε

= βE
[

αk ′α−1

k ′α − k ′′ + ε′

]

1
c = βE

[
αk ′α−1

c ′

]



Next Time

I Next: Permanent Income and Consumption Smoothing

I Homework due next Thursday.

I I may be out of town next Thursday. Will let you know
whether virtual or canceled.
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