
Macro II

Professor Griffy

UAlbany

Spring 2023



Introduction

I Apologies for missing class on account of the weather. Please
review these slides before the next class (2/23-2/28).

I Today: reintroduce stochastic neoclassical growth model.

I Jumping off point for most modern macro models.

I Introduce solution techniques.



Model environment
I As an aside, since this is a straightforward model, let’ts talk

about presentations.

I Make sure you tailor your talk to the audience.

I (Almost) Every macro presentation should have an
environment slide.

I This details the following:
1. preferences

2. technology

3. markets
I Next, what are the states and decisions of the agents?

I Then introduce the individual problem.

I We will go through each of these.



Consumer’s Problem

I consumers in this economy maximize the expected value given
by

E

[ ∞∑
t=0

βtu(ct)

]

I u is a bounded, continuous and strictly increasing utility
function.

I β ∈ (0, 1) is a discount factor.

I subject to

yt ≥ ct + [ kt+1 − (1 − δ)kt︸ ︷︷ ︸
=it

]



Resource Constraints

yt ≥ ct + it
kt+1 = (1 − δ)kt + it

I An agent owns an amount yt ∈ R+ := [0,∞) of consumption
good at time t.

I Output can either be consumed or invested.

I When the good is invested, it is transformed one-for-one into
capital.



Technology

yt+1 = f (γt+1, kt+1) , γt+1 ∼ Φ

I f : R2
+ → R+ is the production function which is increasing

and continuous in k and γ.

I Production is stochastic, in that it depends on a shock γt+1
realized at the end of the current period t.

I Calibration

γt+1 = eσεt+1 , εt+1
i.i.d.∼ N (0, 1), σ > 0

f (kt+1, γt+1) = γt+1kα
t+1

δ = 1



Optimization

max
{ct , kt+1}∞t=0

E

[ ∞∑
t=0

βtu(ct)

]
s.t. yt ≥ ct + kt+1 ∀t (Resource Constraint)

yt+1 = f (kt+1, γt+1), γt+1
i.i.d.∼ Φ ∀t (Technology)

ct ≥ 0 kt+1 ≥ 0 ∀t (Non-negativity Constraint)
y0 = ȳ0 given



Sequential Problem (SP)

max
{ct}∞t=0

E

[ ∞∑
t=0

βtu(ct)

]
s.t. yt+1 = f (kt+1, γt+1), γt+1

i.i.d.∼ Φ ∀t
yt ≥ ct + kt+1∀ t
y0 = ȳ0 given

I Resource constraint holds with equality b/c u′ > 0.

I yt summarizes state of world at the start of each period.

I ct is chosen by the agent each period after observing the state.



Functional Equation (FE)

(SP) is an infinite-dimensional optimization problem. Instead, find
a time-invariant solution to functional equation:

v∗(y) = max
c∈[0,y ]

{
u(c) + β

∫
v∗
(

f (k ′, γ)
)
φ(dγ)

}
y = c + k ′

y ′ = f (k ′, γ)

Solution v∗, evaluated at y = ȳ0, gives the value of the maximum
in (SP).



Steady State
I Hard to characterize dynamics/solve model (find c(t), k(t)∀ t)
I Instead, characterize steady-state.
I c = c ′ = c∗, k = k ′ = k∗.
I pick u(c) = ln(c), f (k, γ) = eσεkα and ε ∼ N(0, 1), σ = 1.
I then

1
c = βE[(αeε′k ′α−1)

1
c ′ ]

I In steady state:

1
c∗ = β(αγ̄k∗α−1)

1
c∗

I We will solve for the stochastic steady state.
I i.e., the steady-state if the aggregate shock were at its mean.



Steady State

I This leaves us with capital:

1 = β(αγ̄k∗α−1)

k∗ = (
1

γ̄αβ
)

1
α−1

k∗ = (γ̄αβ)
1

1−α

I Now consumption from the budget constraint:

c∗ + k∗ = γ̄k∗α

c∗ = γ̄k∗α − k∗

c∗ = γ̄(γ̄αβ)
α

1−α − (γ̄αβ)
1

1−α



Dynamics

I Dynamics:

c ′ = β(αγ̄k ′α−1)c
k ′ = γ̄kα − c

I We have two dynamic variables: c and k.

I The behavior of this system will depend on their dynamics.

I At steady-state:

1 =
c ′
c = β(αγ̄kα−1)

1 =
k ′

k = γ̄kα−1 − c
k

I If both hold, we are in steady-state, if not, dynamics can vary.



Dynamics

I Dynamics:

c ′ = β(αγ̄kα−1)c
k ′ = γ̄kα − c

I Small c: second equation dictates that capital increases.

I Small k: first equation dictates that consumption increases.

I Reverse is true.



Phase Diagram
I Dynamics:

c ′ = β(αγ̄k ′α−1)c
k ′ = γ̄kα − c

I From Eric Sim’s notes:



Solving for dynamics
I Recall contraction mapping
I If T is a contraction mapping with modulus β, then

1. there exists a unique fixed point v∗, and

v∗ = Tv∗

v∗(y) = max
c∈[0,y ]

{
u(c) + β

∫
v∗

(
f (k ′, γ)

)
φ(dγ)

}
y = c + k ′

y ′ = f (k ′, γ)

2. for any v0 and any n ∈ N,

ρ(T nv0, v∗) ≤ βnρ(v0, v∗)

I Yields an is a policy function σ∗(y) = argmax{v(y)}
I We can apply this in two ways: analytically or

computationally.



Computation

How can we implement Bellman operator on our computer?

Tw(y) := max
c∈[0,y ]

{
u(c) + β

∫
w
(

f (k ′, γ)
)

︸ ︷︷ ︸
1. Approximation

φ(dγ)

︸ ︷︷ ︸
2. Integration

}

︸ ︷︷ ︸
3. Optimization

where w is a function that approximates v .



Approximation

I Approximate an analytically intractable real-valued function f
with a computationally tractable function f̂

I given limited information about f .

I Divide the approximation domain of the function into finite
number of sub-intervals and approximate the original
function in each of the intervals.

I The points on the domain which separate the intervals are
called grid points.

I We use the value of the function at each grid point to
approximate the original function.

I Another way to think about it: sampling from domain of the
function at n nodes. As n → ∞, f̂ → f



Approximation II
In order to figure out Bellman operator, we need to approximate an
analytically intractable real-valued function w .

Tw(y) := max
c∈[0,y ]

{
u(c) + β

∫
w
(

f (k ′, γ)
)
φ(dγ)

}

I Interpolation
1. Determine an approximation domain of w .
2. Pick n (often evenly spaced) nodes, produces n − 1 intervals.
3. Approximate the original function w in each of the resulting

intervals using a polynomial.
I Grid search

1. Determine an approximation domain of w .
2. Pick n nodes, produces n − 1 intervals.
3. Evaluate function at each node and pick maximum.



Integration

In order to figure out Bellman operator, we need to evaluate
continuation value.

Tw(y) := max
c∈[0,y ]

{
u(c) + β

∫
w
(

f (k ′, γ)
)
φ(dγ)

}

I One approach: Monte Carlo integration: Given a random
sample of size n, {γi}n

i=1

1
n

n∑
i=1

w
(

f (k ′, γi)
)
���φ(γi)

�
��φ(γi)

p−→
∫

w
(

f (k ′, γ)
)
φ(γ)dγ

I Better approach: Gaussian Quadrature (for normally
distributed shocks and from related families)



Optimization

I Find the minimum of some real-valued function of several real
variables on a domain that has been specified.

I Derivative methods: Newton’s method, etc.

I Derivative free: Golden section search, Grid search: pick
maximizing node.

I Finding the global minimum can be challenging.

I The function can have many local minima.

I Curse of dimensionality & curvature of problem (when
problems approach boundaries).



Conclusion

I Alternative: guess and verify (method of undetermined
coefficients).

I We will cover this after returning to complete markets.

I Midterm in two weeks.
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