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Announcements

I Today: Start discussing solution techniques.
I Focus on linearization & its problems.
I Midterm on Thursday! Will not cover today’s lecture.
I HW4 due tonight.



Motivation

I Models are hard to solve globally.
I Requires a lot of grid points, entails curse of dimensionality,

takes a long time.
I A linearized system, by contrast, is easy to solve.
I Need to pick a place to linearize around.
I Pick the steady state.
I Underlying assumption: economy will stay close to the

steady-state.



Empirical Motivation

I Standard RBC: all fluctuations of hours worked on the
intensive margin, i.e. average number of hours worked.

I Data: little fluctuation in average hours worked; lots of
fluctuation in whether or not people are working (extensive
margin).

I Standard RBC: missed badly on labor fluctuations (Frisch
Elasticity, i.e. response of labor to change in wage too low).

I Solution: Modify model to have extensive margin with high
Frisch Elasticity.

I Now: households pick the probability of working, but have to
work a set number of hours.

I This is a nonconvexity in that it forces individuals to work
either 0 or h hours.



Hansen (1985)

I Neoclassical growth model with labor-leisure lottery.
I A social planner maximize the following:

E(
∞∑

t=0
βt [ln(Ct)− γHt ]) (1)

I Subject to the following constraints:

Yt = AtK θ
t (η

tHt)
1−θ (2)

ln(At) = (1 − ρ)ln(A) + ρln(At−1) + εt , εt ∼ N(0, σ2
ε ) (3)

I The goods market clears and capital evolves in a
predetermined fashion.

I Here, we assume that per capita labor productivity grows at
rate η.



Equilibrium
I First step: detrend appropriate variables by per capita growth

to get stationarity: i.e. yt = Yt/η
t .

I The system of equations that characterize the equilibrium are:

yt = atkθ
t h1−θ

t (4)

ln(at) = (1 − ρ)ln(A) + ρln(at−1) + εt (5)

yt = ct + it (6)

ηkt+1 = (1 − δ)kt + it (7)
I Combine FOC[c] and FOC[h]:

γctht = (1 − θ)yt (8)

I Euler Equation:

η

ct
= βEt [

1
ct+1

(θ(
yt+1
kt+1

) + 1 − δ)] (9)



Solving for the Steady-State

ln(a∗) = (1 − ρ)ln(A) + ρln(a∗)

⇒ ln(a∗) = ln(A) (10)

Euler Equation:

η

c∗ = βEt [
1
c∗ (θ(

y∗

k∗ ) + 1 − δ)]

⇒ η

β
= θ

y∗

k∗ + 1 − δ

⇒ k∗ = (
θ

η
β − 1 + δ

)y∗ (11)



Solving for the Steady-State
II Use the previous to solve for investment

ηk∗ = (1 − δ)k∗ + i∗

⇒ (η − 1 + δ)k∗ = i∗

⇒ i∗ = (
θ(η − 1 + δ)
η
β − 1 + δ

)y∗ (12)

I FOC[c] and FOC[h]:

γc∗h∗ = (1 − θ)y∗

⇒ γ[1 − (
θ(η − 1 + δ)
η
β − 1 + δ

)]y∗h∗ = (1 − θ)y∗

⇒ h∗ = (
1 − θ

γ
)[1 − (

θ(η − 1 + δ)
η
β − 1 + δ

)]−1 (13)



Solving for the Steady-State

I Finally, solve for output.

y∗ = a∗k∗θh∗1−θ

y∗ = a∗(( θ
η
β − 1 + δ

)y∗)θ[(
1 − θ

γ
)[1 − (

θ(η − 1 + δ)
η
β − 1 + δ

)]−1]1−θ

y∗1−θ = a∗( θ
η
β − 1 + δ

)θ[(
1 − θ

γ
)[1 − (

θ(η − 1 + δ)
η
β − 1 + δ

)]−1]1−θ

y∗ = a∗
1

1−θ (
θ

η
β − 1 + δ

)
θ

1−θ [(
1 − θ

γ
)[1 − (

θ(η − 1 + δ)
η
β − 1 + δ

)]−1]1−θ

(14)
I All variables now a function of parameters.



Steady-States
I In steady-state yt = yt+1 = y∗.

ln(a∗) = ln(A) (15)

k∗ = (
θ

η
β − 1 + δ

)y∗ (16)

i∗ = (
θ(η − 1 + δ)
η
β − 1 + δ

)y∗ (17)

c∗ = [1 − (
θ(η − 1 + δ)
η
β − 1 + δ

)]y∗ (18)

h∗ = (
1 − θ

γ
)[1 − (

θ(η − 1 + δ)
η
β − 1 + δ

)]−1 (19)

y∗ = a∗
1

1−θ (
θ

η
β − 1 + δ

)
θ

1−θ [(
1 − θ

γ
)[1 − (

θ(η − 1 + δ)
η
β − 1 + δ

)]−1]1−θ

(20)
I These steady-states will be used for calibration/solving.



Overview

I Broadly, two methods of solving models:
1. Local linear methods.
2. Global non-linear methods.

I Tradeoff: accuracy (global non-linear) for speed and simplicity
(local linear).

I My preference: global methods (linear methods involve
linearizing Euler Equation, distorting choices over risk).

I Here: Discuss log linearization and Blanchard and Kahn’s
Method.



Local Linear Methods

I Log-linearize the system around the steady-state, then
proceed.

I First have to solve the system for stability:
1. Klein’s Method (2000): Used for singular matrices.
2. Sim’s Method (2001): Used when it is unclear which variables

are states and controls.
3. Blanchard and Kahn’s Method (1980): First solution method

for rational expectations models.
I Here, we will use Blanchard and Kahn’s Method.



Log-Linearizing the System

We first wish to rewrite x̃t = ln(xt)− ln(x) in two convenient ways:

x̃t = ln(xt
x )

Then, the first-order Taylor Approximation to this equation yields:

x̃t u x̃t(x) +
∂x̃t
∂xt

(x)(xt − x)

⇒ x̃t u ln(1) + 1
x (xt − x)

We can also rewrite the equation for x̃t as

xt = xe x̃t (21)



Log-Linearizing the System

From equilibrium conditions:

yt = atkθ
t h1−θ

t (22)

⇒ ln(yt) = ln(at) + θln(kt) + (1 − θ)ln(ht)

ln(y) = ln(a) + θln(k) + (1 − θ)ln(h)

⇒ ỹt = ln(yt)− ln(y) = ln(at) + θln(kt) + (1 − θ)ln(ht)

− (ln(a) + θln(k) + (1 − θ)ln(h))

⇒ ỹt = ãt + θk̃t + (1 − θ)h̃t (23)



Log-Linearizing the System

ln(at) = (1 − ρ)ln(A) + ρln(at−1) + εt

ln(a) = (1 − ρ)ln(A) + ρln(a)

⇒ ãt = ρãt−1 + εt (24)



Log-Linearizing the System

yt = ct + it

⇒ x̃t u ln(1) + 1
x (xt − x) = (

xt
x + 1)

⇒ y(ỹt + 1) = c(c̃t + 1) + i (̃it + 1)

ỹt =
c
y c̃t +

i
y ĩt



Log-Linearizing the System

I Let ỹt = ln(yt)− ln(y∗). Then, using Taylor Series
approximations, the system characterizing the equilibrium
becomes:

ỹt = ãt + θk̃t + (1 − θ)h̃t (25)

ãt = ρãt−1 + εt (26)

(
η

β
−1+δ)ỹt = [

η

β
−1+δ−θ(η−1+δ)]c̃t+θ(η−1+δ)̃it (27)

ηk̃t+1 = (1 − δ)k̃t + (η − 1 + δ)̃it (28)

ỹt = c̃t + h̃t (29)

0 =
η

β
c̃t + E [(

η

β
− 1 + δ)(ỹt+1 − k̃t+1)−

η

β
c̃t+1] (30)



Log-Linearizing the System

I We can now write the system as:

Ψ1ζt = Ψ2ξt +Ψ3ãt (ME)

Ψ4Et(ξt+1) = Ψ5ξt +Ψ6ζt +Ψ7ãt (TE)
I ζt are static predetermined and nonpredetermined variables,

[ỹt , ĩt , h̃t ]
′.

I ξt are dynamic predetermined and nonpredetermined variables,
[k̃t , c̃t ]

′.
I ãt is the technology process.
I Why is c̃t among the dynamic variables?



Matrices

κ = η/β − 1 + δ

λ = η − 1 + δ



Solving the Model - Blanchard and Kahn (1980)

I Select c̃0 st the system isn’t explosive (optimal control!).



Solving the Model - Cont.

I Solve systems (TE and ME) so that ξt+1 is only a function on
ξt and ãt :

Ψ1ζt = Ψ2ξt +Ψ3ãt (31)

Ψ4Et(ξt+1) = Ψ5ξt +Ψ6ζt +Ψ7ãt (32)

⇒ ζt = Ψ−1
1 [Ψ2ξt +Ψ3ãt ]

I Plug into transition equation:

Ψ4Et(ξt+1) = Ψ5ξt +Ψ6Ψ
−1
1 [Ψ2ξt +Ψ3ãt ] + Ψ7ãt

⇒ Et(ξt+1) = Ψ−1
4 [Ψ5+Ψ6Ψ

−1
1 Ψ2]ξt+Ψ−1

4 [Ψ7+Ψ6Ψ
−1
1 Ψ3]ãt

(33)
I Desired result!



Solving the Model - Cont.

I Having solved systems on previous slide so that ξt+1 is only a
function on ξt and ãt :[

k̃t+1
Et(c̃t+1)

]
= Λ−1JΛ

[
k̃t
c̃t

]
+ Eãt (34)

I Λ−1JΛ is the Jordan Decomposition.
I Subsume Λ into the model variables, denoted by hats:

ĉt = Λ12k̃t + Λ22c̃t (35)



Solving the Model - Cont.

I Subsume Λ into the model variables, denoted by hats.[
k̂t+1

Et(ĉt+1)

]
=

[
J1 0
0 J2

] [
k̂t
ĉt

]
+ Dãt (36)

Et(ĉt+1) = J2ĉt + D2ãt (37)
I J2 > 1 → bad choice of ct and this explodes.
I Solution: pick ct so that it isn’t a function of ct−1!
I Rearranging:

ĉt = J−1
2 Et(ĉt+1)− J−1

2 D2ãt (38)



Solving the Model - Cont.

I Iterating on previous equation:

ĉt+1 = J−1
2 Et(ĉt+2)− J−1

2 D2ãt+1 (39)

⇒ ĉt = J−1
2 Et(J−1

2 Et(ĉt+2)− J−1
2 D2ãt+1)− J−1

2 D2ãt

⇒ ĉt = J−2
2 Et(ĉt+2))− J−2

2 D2ρãt − J−1
2 D2ãt (40)

I Impose transversality condition (i.e. Et(ĉt+i)) = 0 for large
enough i):

⇒ ĉt = −
∞∑

i=0
J−(i+1)

2 D2ρãt (41)



Solving the Model - Cont.

I Iterating on (33):

ĉt = Λ12k̃t + Λ22c̃t

⇒ Λ22c̃t = −Λ12k̃t −
∞∑

i=0
J−(i+1)

2 D2ρãt

I Solving this yields:

⇒ ct = −Λ−1
22 Λ12k̃t + (1/Λ22)(

D2
ρ− J2

)ãt (42)

I The system will now be saddle-path stable.



Next Time

I Midterm!
I Start value function iteration next week.
I See my website for homework.
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