Macro II

Professor Griffy

UAlbany

Spring 2023

Introduction

- Midterm in two weeks!
- ▶ Homework Thursday after break (same day as midterm).
- ► Today: Real Business Cycle Model

Basic RBC Model

Household solves

$$\max_{\{C_{t}, I_{t}, L_{t}, K_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} N_{t} \left[\ln \left(\frac{C_{t}}{N_{t}} \right) + \chi \frac{(1 - L_{t}/N_{t})^{1-\gamma} - 1}{1 - \gamma} \right]$$

$$s.t. \quad C_{t} + I_{t} = r_{t} K_{t} + W_{t} L_{t}, \qquad (BC)$$

$$K_{t+1} = (1 - \delta) K_{t} + I_{t}, \qquad (CA)$$

$$L_{t} \in [0, N_{t}],$$

$$K_{0} \text{ given}, \quad C_{t} \geq 0.$$

- ▶ Parameter restrictions: $\chi > 0$, $\gamma \ge 0$, $0 < \beta < 1$
- $ightharpoonup 1 L_t/N_t$ is per capita leisure
- ▶ Note that K_t < 0 represents borrowing

Basic RBC Model II

Assume constant growth in population and productivity

$$N_t = N_0 N^t, N_0, N > 0, \beta N < 1,$$

 $A_t = A_0 A^t, A_0, A > 0.$

▶ The per-effective-worker problem becomes:

$$\max_{\{c_t, k_{t+1}, \ell_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} (\beta N)^t \left[\ln (A_t c_t) + \chi \frac{(1 - \ell_t)^{1-\gamma} - 1}{1 - \gamma} \right],$$

$$s.t. \quad c_t + ANk_{t+1} = R_t k_t + w_t \ell_t,$$

$$\ell_t \in [0, 1]; \quad k_0 \text{ given}, \quad c_t \ge 0,$$

$$\lim_{J \to \infty} \left(\prod_{j=1}^{J-1} R_{t+j}^{-1} \right) A_{t+J} N_{t+J} k_{t+J} = 0.$$

Solution

The first order conditions are

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}, \qquad (EE)$$

$$u'(A_t c_t) A_t w_t = v' (1 - \ell_t)$$

$$\Leftrightarrow \frac{1}{c_t} w_t = \chi (1 - \ell_t)^{-\gamma}. \qquad (LL)$$

Euler equation and "portfolio allocation"

Effect of interest rate changes on savings

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}$$

- Substitution effect: Increasing R_{t+1} lowers the price of future consumption, inducing substitution into the cheaper good (future consumption), inducing more saving
- Income effect
 - Positive assets: Increasing R_{t+1} raises future income and consumption, lowers future MU_C , inducing less savings
 - Negative assets: Increasing R_{t+1} reduces future income and consumption, raises future MU_C , inducing more savings

Effect of interest rate changes on savings

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}$$

- General (empirical) consensus
 - Consumers are net savers: the aggregate income effect of higher interest rates is to lower saving
 - ► The substitution effect weakly dominates implying that savings increases in interest rates

Labor-leisure tradeoff

$$\frac{1}{c_t} w_t = \chi \left(1 - \ell_t \right)^{-\gamma}$$

- $ightharpoonup MU_C imes wage = MU_L$
- Wealth effects: Holding w_t constant, higher permanent income raises current consumption, lowers marginal benefit of working
 - Higher assets
 - ► Higher current or future non-labor income
 - Higher current or future labor income
 - Increasing non-labor component of permanent income lowers labor supply

Effects of increasing the current wage $(MU_C \times wage = MU_L)$

$$\frac{1}{c_t}w_t = \chi \left(1 - \ell_t\right)^{-\gamma}$$

- ▶ Substitution effect: holding MU_C constant, and raising w_t increases marginal benefit of working
- ▶ Income effect: raising w_t increases y_t^P , lowers MU_C and marginal benefit of working

General (empirical) consensus

$$\frac{1}{c_t}w_t = \chi (1 - \ell_t)^{-\gamma}$$

- Temporary wage increases generate more hours due to small income effect
- ▶ Permanent wage increases generate no more hours because income and substitution effects offset. Consistent with long-term data where wage rises but labor hours do not
- Our specification delivers this

Labor supply curve

► Rearrange (LL) to get

$$\ell_t = 1 - (c_t \chi)^{1/\gamma} w_t^{-1/\gamma}.$$

Frisch supply curve

$$\ell_t = f(w_t, MU_C) = f(w_t, y_t^P).$$

- Consider effects of changing wages with MU_C held constant
- Wealth effects ignored
- Note: MU_C can depend on things besides y_t^P , although it does not here

Intertemporal elasticity of substitution of labor (IES_L or Frisch elasticity)

▶ Measures willingness to vary labor over time, holding MU_C (wealth) constant

$$IES_L = \frac{d \ln (\ell_1/\ell_2)}{d \ln (w_1/w_2)} \Big|_{MIG}$$
.

Derivation

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1},$$

$$\frac{1}{c_t} w_t = \chi \left(1 - \ell_t \right)^{-\gamma}.$$
(EE)

► Combine (EE) and (LL)

$$\chi \frac{(1-\ell_1)^{-\gamma}}{w_1} = \beta A^{-1} \chi \frac{(1-\ell_2)^{-\gamma}}{w_2} R_2.$$

Portfolio Allocation

- Note that the household smooths leisure as well as consumption
- For example, interest rates affect labor supply
- Rearrange the previous equation

$$\begin{split} \beta A^{-1} R_2 \left(\frac{w_1}{w_2} \right) &= \frac{(1 - \ell_1)^{-\gamma}}{(1 - \ell_2)^{-\gamma}}, \\ \ln \left(\beta A^{-1} R_2 \right) + \ln \left(\frac{w_1}{w_2} \right) &= -\gamma \ln (1 - \ell_1) + \gamma \ln (1 - \ell_2), \\ &= -\gamma \big[\ln (1 - \exp (\ln \ell_1)) \\ &- \ln (1 - \exp (\ln \ell_2)) \big]. \end{split}$$

Implicitly differentiate:

Now assume that $\ell_1 = \ell_2 = \ell$

 $d \ln \left(\frac{w_1}{w_2}\right) = \gamma \frac{\exp \left(\ln \left(\ell_1\right)\right)}{1 - \exp \left(\ln \left(\ell_1\right)\right)} d \ln \left(\ell_1\right)$

 $-\gamma \frac{\exp\left(\ln\left(\ell_2\right)\right)}{1-\exp\left(\ln\left(\ell_2\right)\right)}d\ln\left(\ell_2\right).$

 $d \ln \left(\frac{w_1}{w_2} \right) = \gamma \frac{\ell}{1 - \ell} d \ln (\ell_1) - \gamma \frac{\ell}{1 - \ell} d \ln (\ell_2)$

 $= \gamma \frac{\ell}{1-\ell} d \ln \left(\frac{\ell_1}{\ell_2} \right).$

 $= \gamma \frac{\ell}{1-\ell} \left[d \ln \left(\ell_1 \right) - d \ln \left(\ell_2 \right) \right]$

Finally, we get

infinite

▶ Tip: if $\gamma = 0$ such that utility is linear in leisure, then *IES_L* is

$$IES_{L} = \frac{d \ln (\ell_1/\ell_2)}{d \ln (w_1/w_2)} \Big|_{MU_{C}}$$

 $= \frac{1}{\gamma} \left(\frac{1-\ell}{\ell} \right).$

Non-Separable Preferences (Low, 2005)

Household solves

$$\begin{split} \max_{\{c_t, k_{t+1}, \ell_t\}_{t=0}^{\infty}} E_0 \left(\sum_{t=0}^{\infty} (\beta N)^t \, u \left(A_t c_t, 1 - \ell_t \right) \right), \\ s.t. \quad c_t + A N k_{t+1} &= R_t k_t + w_t \ell_t, \\ \ell_t &\in [0, 1], \end{split}$$

- and the other usual constraints
- ► The first-order conditions are

$$u_{Ac} (A_t c_t, 1 - \ell_t) A_t = \lambda_t,$$

$$u_{1-\ell} (A_t c_t, 1 - \ell_t) = \lambda_t w_t,$$

$$\lambda_t = \beta A^{-1} E_t (R_{t+1} \lambda_{t+1}).$$

where λ_t is the multiplier on the budget constraint

Benchmark utility specification is isoelastic Cobb-Douglas

$$u\left(A_tc_t,1-\ell_t
ight)=rac{1}{1-\gamma}\left((A_tc_t)^\chi(1-\ell_t)^{1-\chi}
ight)^{1-\gamma}$$

$$u\left(A_tc_t,1-\ell_t\right)=\frac{1}{1-\gamma}\left((A_tc_t)^\chi(1-\ell_t)^{1-\chi}\right)^{1-\gamma}$$
 The derivatives of this function are

 $u_{Ac} = \chi(1-\gamma)\frac{1}{A_t c_t} u(A_t c_t, 1-\ell_t),$

 $u_{1-\ell,Ac} = \frac{\chi(1-\chi)(1-\gamma)^2}{(1-\ell_t)A_tc_t}u(A_tc_t,1-\ell_t).$

 $u_{1-\ell} = (1-\chi)(1-\gamma)\frac{1}{1-\ell_{t}}u(A_{t}c_{t}, 1-\ell_{t}),$

- ► Key issue: Is consumption at time-t a substitute or a complement for leisure at time-t?
 - This depends on the sign of the cross-partial derivative $u_{Ac,1-\ell}(\cdot)$: $u_{Ac,1-\ell} > 0$ implies complements

 For the benchmark specification

$$u_{1-\ell,Ac} = \chi(1-\chi)(1-\gamma) \times (A_t c_t)^{\chi(1-\gamma)-1} (1-\ell_t)^{(1-\chi)(1-\gamma)-1}.$$

- \blacktriangleright This term will be negative if $\gamma>1$
- ▶ Baseline assumption: $\gamma = 2.2$, implying consumption and leisure are substitutes

Combining first-order conditions yields

$$u_{1-\ell}(A_t c_t, 1-\ell_t) = u_{AC}(A_t c_t, 1-\ell_t) A_t w_t.$$

▶ With the baseline preferences, this becomes

$$\begin{aligned} \frac{1-\chi}{1-\ell_t} &= \chi \frac{w_t}{c_t},\\ \Rightarrow \ell_t &= 1 - \left(\frac{1-\chi}{\chi}\right) \frac{c_t}{w_t}. \end{aligned}$$

- This specification produces constant hours along a balanced growth path
- King et al (1989) provide a general set of conditions

Data Puzzle 1

- Consumption tracks income over the life-cycle: Inconsistent with consumption smoothing
- ▶ If consumption and leisure are substitutes, people working more hours will consume more implying that consumption tracks income (Heckman, 1974)

Data Puzzle 2

- There is a discrete drop in consumption immediately after retirement which is inconsistent with consumption smoothing
- ▶ If consumption and leisure are substitutes, then consumption will drop at retirement (French 2005, Aguiar and Hurst 2005)

Data Puzzle 3

- ► Low-wage young people work many hours; high-wage old people work fewer hours: Inconsistent with the intertemporal substitution of labor
- Young people work long hours to fund precautionary saving
- ► This precautionary saving builds up assets and reduces the need to work when old
- ► This result does not require non-separable preferences
- ► It does require life-cycle (not infinite-horizon) framework with low initial wealth

Conclusion

- Spring break! Watch March Madness!
- Midterm in two weeks!
- Homework in two weeks!