Problem Set 2

Problem 1: Markov Chains We can apply Markov Chains in a variety of circumstances that involve dynamics. We will think of a simple "lake model" of employment dynamics. There are three states: employed, unemployed, and non-participant (out of the labor force). Denote these as E for employed, U for unemployed, and N for non-participant. The transition probabilities are as follows: $E \rightarrow E: 0.9 ; E \rightarrow U: 0.1 ; E \rightarrow N: 0.0 ; U \rightarrow E: 0.5 ; U \rightarrow U: 0.5 ; U \rightarrow N: 0.0 ; N \rightarrow E:$ $0.0 ; N \rightarrow U: 0.0 ; N \rightarrow N: 1.0$
a) Write down the transition equation in the following way: $x_{t+1}^{\prime}=x_{t}^{\prime} A$. Define each state in x clearly and denote the transition matrix, A, correctly.
b) Is there a unique stationary distribution? Why or why not?
c) Use a computer programming language to find the ergodic distribution for the following initial condition: $x_{0}^{\prime}=[0.550 .050 .4]$. Given an initial condition, is this distribution stationary?
d) Sectoral Decline: Suppose now that we are modeling an individual sector in the economy. Over time, this sector's reliance on labor is declining. Unfortunately for workers in this sector, they have a great deal of sector-specific human capital and do not have enough general human capital to find jobs in other sectors. The transition probabilities for E and N remain unchanged, but now the transition probabilities for U are given by $U \rightarrow E: 0.5 ; U \rightarrow U$: $0.45 ; U \rightarrow N: 0.05$. Write down the transition equation. Does this have a unique stationary distribution? Use the same initial condition and find the resulting distribution for large t.
e) Suppose now that the government institutes a worker retraining program. Keeping the probabilities for transitions out of unemployment fixed at their values from part d, this new policy makes the transition probabilities from $N: N \rightarrow E: 0.1 ; N \rightarrow U: 0.0 ; N \rightarrow N: 0.9$. Use the initial distribution from part (c) and find the distribution for large t.
f) Draw two random series uniformly distributed. To do this, draw 3 numbers from a uniform distributed between 0 and 1 . The first number is the (un-normalized) measure of workers starting employed; the second unemployed; the third, non-participant. Normalize by the sum of these three numbers. Simulate the Markov Chain for this series over 1000 periods and plot this series. Repeat this a second time and plot this series again. Discuss the differences between your results.

