PhD Macro II:
 What is a Macro Model?

Professor Griffy

UAlbany

Spring 2024

Announcements

- Today: Basic two-period consumption-savings model.
- Use to understand what we are doing with macro models.
- Key: macro models are
- difference equations from a convex optimization problem
- that are resolved by a specified equilibrium concept.
- i.e., we specify a what we think the world looks like.
- Then we show how people would figure out that world.
- Then we show how those decisions aggregate.
- Will get you access to the cluster today.
- Homework due Thursday (for now).

Basic two-period model

- A (very) basic consumption-savings model:

$$
\begin{align*}
\max _{c_{1}, a_{2}, c_{2}} u\left(c_{1}\right) & +\beta u\left(c_{2}\right) \tag{1}\\
\text { s.t. } c_{1}+a_{2} & =(1+r) a_{1}+w_{1} \tag{2}\\
c_{2} & =(1+r) a_{2}+w_{2} \tag{3}
\end{align*}
$$

- What is this?:
- concave return function (sum of concave functions is concave)
- over convex set (budget constraint).
- Two (philosophical) ways to think about solving this problem:

1. We are solving a decision problem of an agent, then aggregating to clear markets.
2. We are deriving a set of difference (cont. time \Longrightarrow differential) equations and finding an equilibrium.

- Keep both in mind (will return to this later).

Euler Equation

- We solve this and get an Euler Equation:

$$
\begin{equation*}
u^{\prime}\left(c_{1}\right)=\beta(1+r) u^{\prime}\left(c_{2}\right) \tag{4}
\end{equation*}
$$

- What does this say?

1. Agents will allocate their budget between two periods according to this equation.
2. This expression tells us the growth path of consumption, given c_{0}.

- Euler equation: absolute, fundamental, key equation in every (dynamic) macro model.
- Note: Euler equation need not be over consumption.
- Budget constraint tells us path of assets/consumption for a given initial condition.

Euler Equation

- The Euler Equation tells us the evolution of consumption in an economy.
- That is, it determines the dynamics.
- The effect of taxes, the presence of frictions or wedges, adjustment costs, etc. can usually be distilled to the following:

$$
\begin{equation*}
u^{\prime}\left(c_{1}\right)=(1+\Delta) \beta(1+r) u^{\prime}\left(c_{2}\right) \tag{5}
\end{equation*}
$$

- where Δ is a distortion in the economy, i.e. a friction that prevents the market from realizing the perfectly competitive equilibrium.
- These features change the marginal utility of consumption over time, and thus distort the path of consumption.

Key Insight II: Portfolio Allocation

- Let's return to the two-period model:

$$
\begin{align*}
\max _{c_{1}, a_{2}, \ell, c_{2}} u\left(c_{1}, \ell\right) & +\beta u\left(c_{2}, 1\right) \tag{6}\\
\text { s.t. } c_{1}+a_{2} & =(1+r) a_{1}+w_{1}(1-\ell) \tag{7}\\
c_{2} & =(1+r) a_{2} \tag{8}
\end{align*}
$$

- Now agents are optimizing over consumption and leisure.
- At first blush, this looks like it could become more difficult.

Portfolio Allocation

- When we solve this model, we get

$$
\begin{equation*}
u_{1}\left(c_{1}, \ell^{*}\right)=\beta(1+r) u_{1}\left(c_{2}, 0\right) \tag{9}
\end{equation*}
$$

- But also

$$
\begin{align*}
\frac{\partial V}{\partial \ell} & =u_{2}\left(c_{1}^{*}, \ell\right)-w \lambda=0 \tag{10}\\
u_{2}\left(c_{1}^{*}, \ell\right) & =w u_{1}\left(c_{1}^{*}, \ell\right) \tag{11}
\end{align*}
$$

- and

$$
\begin{equation*}
c_{1}+a_{2}=(1+r) a_{1}+w_{1}(1-\ell) \tag{12}
\end{equation*}
$$

- Now we have an equation that determines dynamics (Euler Equation) \& one that gives corresponding change in assets.
- And a static equation that determines the allocation of resources within a period (Portfolio Allocation).
- A lot of problems boil down to these two equations (possibly more with additional static choices).

Models as Dynamic Systems

- Two (philosophical) ways one might think about solving this problem:

1. We are solving a decision problem of an agent, then aggregating to clear markets.
2. We are deriving a difference equation and finding an equilibrium.

- Now, we'll briefly discuss the second interpretation.

Neoclassical Growth Model

- The baseline model for most of modern macro (value function representation):

$$
\begin{align*}
V\left(k_{t}\right) & =\max _{c_{t}} u\left(c_{t}\right)+\beta V\left(k_{t+1}\right) \tag{13}\\
\text { s.t. } c_{t}+k_{t+1} & =k_{t}^{\alpha}+(1-\delta) k_{t} \tag{14}
\end{align*}
$$

- We have a recursive formulation \&
- We have a dynamic equation for capital.
- What we will solve for:
- Euler Equation;
- Steady state capital and consumption.

Neoclassical Growth Model

$$
\begin{align*}
V_{t}\left(k_{t}\right) & =\max _{c_{t}} u\left(c_{t}\right)+\beta V_{t+1}\left(k_{t+1}\right) \tag{15}\\
\text { s.t. } c_{t}+k_{t+1} & =k_{t}^{\alpha}+(1-\delta) k_{t} \tag{16}
\end{align*}
$$

- Solving this:

$$
\begin{gather*}
\frac{\partial V_{t}}{\partial c_{t}}=-\lambda+u^{\prime}\left(c_{t}\right)=0 \tag{17}\\
\frac{\partial V_{t}}{\partial k_{t+1}}=-\lambda+\beta \frac{\partial V_{t+1}}{\partial k_{t+1}}=0 \tag{18}
\end{gather*}
$$

- Envelope condition:

$$
\begin{equation*}
\frac{\partial V_{t+1}}{\partial k_{t+1}}=\frac{\partial V_{t}}{\partial k_{t}}=\lambda\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) \tag{19}
\end{equation*}
$$

Neoclassical Growth Model

- FOCs:

$$
\begin{align*}
\frac{\partial V_{t}}{\partial c_{t}} & =-\lambda+u^{\prime}\left(c_{t}\right)=0 \tag{20}\\
\frac{\partial V_{t}}{\partial k_{t+1}} & =-\lambda+\beta \frac{\partial V_{t+1}}{\partial k_{t+1}}=0 \tag{21}
\end{align*}
$$

- Envelope condition:

$$
\begin{equation*}
\frac{\partial V_{t+1}}{\partial k_{t+1}}=\frac{\partial V_{t}}{\partial k_{t}}=\lambda\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) \tag{22}
\end{equation*}
$$

- Putting these together gives us the Euler Equation:

$$
\begin{equation*}
u^{\prime}\left(c_{t}\right)=\beta\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) u^{\prime}\left(c_{t+1}\right) \tag{23}
\end{equation*}
$$

- This \& BC give us dynamics of neoclassical growth model.

Steady State

- What is a steady state and why do we care?
- It is challenging in general to characterize the solution to our model:
- Even if we specify a utility function, it will have no closed form solution unless $\delta=1$.
- But we can characterize the solution in the steady-state, i.e., where variables are constant over time:
- $c_{t}=c_{t+1}=c^{*}, k_{t}=k_{t+1}=k^{*}$.

Steady State

- But we can characterize the solution in the steady-state, i.e., where variables are constant over time:
- $c_{t}=c_{t+1}=c^{*}, k_{t}=k_{t+1}=k^{*}$.
- pick $u(c)=\ln (c)$. then

$$
\begin{equation*}
\frac{1}{c_{t}}=\beta\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) \frac{1}{c_{t+1}} \tag{24}
\end{equation*}
$$

- In steady state:

$$
\begin{equation*}
\frac{1}{c^{*}}=\beta\left(\alpha k^{* \alpha-1}+(1-\delta)\right) \frac{1}{c^{*}} \tag{25}
\end{equation*}
$$

- Why would the Euler Equation in the steady-state only be a function of capital?

Steady State

- This leaves us with capital:

$$
\begin{align*}
1 & =\beta\left(\alpha k^{* \alpha-1}+(1-\delta)\right) \tag{26}\\
k^{*} & =\left(\frac{1}{\alpha \beta}-\frac{(1-\delta)}{\alpha}\right)^{\frac{1}{\alpha-1}} \tag{27}\\
k^{*} & =\left(\frac{\alpha \beta}{1-\beta(1-\delta)}\right)^{\frac{1}{1-\alpha}} \tag{28}
\end{align*}
$$

- Now consumption from the budget constraint:

$$
\begin{align*}
c^{*}+k^{*} & =k^{* \alpha}+(1-\delta) k^{*} \tag{29}\\
c^{*} & =k^{* \alpha}-\delta k^{*} \tag{30}\\
c^{*} & =\left(\frac{\alpha \beta}{1-\beta(1-\delta)}\right)^{\frac{\alpha}{1-\alpha}}-\delta\left(\frac{\alpha \beta}{1-\beta(1-\delta)}\right)^{\frac{1}{1-\alpha}} \tag{31}
\end{align*}
$$

- Why would consumption be determined by the budget constraint, not the Euler Equation?

Dynamics

- Outside of steady-state we need to think about dynamics, i.e., how model evolves or fluctuates (in presence of shocks).
- Dynamics:

$$
\begin{align*}
& c_{t+1}=\beta\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) c_{t} \tag{32}\\
& k_{t+1}=k_{t}^{\alpha}+(1-\delta) k_{t}-c_{t} \tag{33}
\end{align*}
$$

- We have two dynamic variables: c and k.
- The behavior of this system will depend on their dynamics.

Dynamics

- Dynamics:

$$
\begin{align*}
& c_{t+1}=\beta\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) c_{t} \tag{34}\\
& k_{t+1}=k_{t}^{\alpha}+(1-\delta) k_{t}-c_{t} \tag{35}
\end{align*}
$$

- The behavior of this system will depend on their dynamics.
- At steady-state:

$$
\begin{align*}
& 1=\frac{c_{t+1}}{c_{t}}=\beta\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) \tag{36}\\
& 1=\frac{k_{t+1}}{k_{t}}=k_{t}^{\alpha-1}+(1-\delta)-\frac{c_{t}}{k_{t}} \tag{37}
\end{align*}
$$

- If both hold, we are in steady-state, if not, quantities can vary dynamically.

Dynamics

- Dynamics:

$$
\begin{align*}
& c_{t+1}=\beta\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) c_{t} \tag{38}\\
& k_{t+1}=k_{t}^{\alpha}+(1-\delta) k_{t}-c_{t} \tag{39}
\end{align*}
$$

- Small value of c_{t} : second equation dictates that $k_{t} \uparrow$.
- Small value of k_{t} : first equation dictates that $c_{t} \uparrow$.
- Reverse is true.

Phase Diagram

- Dynamics (figure from Eric Sim's notes):

$$
\begin{align*}
& c_{t+1}=\beta\left(\alpha k_{t}^{\alpha-1}+(1-\delta)\right) c_{t} \tag{40}\\
& k_{t+1}=k_{t}^{\alpha}+(1-\delta) k_{t}-c_{t} \tag{41}
\end{align*}
$$

Phase Diagram

- Solving a model (mathematical intuition): determining rules that put us on the saddle path (dashed line).
- Same concept for a decentralized economy.
- Seeing these models as dynamic systems expands our toolbox for solving them.
- We will discuss this later.

Next Time

- Discuss important time series preliminaries.
- Be sure to start Matlab homework.
- See online for specific assignment.

