Macro II

Professor Griffy

UAlbany

Spring 2024

Introduction

- Today: Market structure
- Complete markets:
- Arrow-Debreu structure (time-0 contingent claims);
- Arrow securities (sequentially traded one-period claims).
- Homework 3 due next Thursday.

Complete markets

- Individuals in the economy have access to a comprehensive set of risk-sharing contracts:
- They can contract to insure against any event or sequence of events.
- They write these contracts with other agents in the economy.
- Will lead to
- Perfect risk sharing
- i.e., representative agent.

Complete markets

- Define unconditional probability of sequence of shocks $s^{t}=\left[s_{0}, s_{1}, \ldots, s_{t}\right]$ to be $\pi_{t}\left(s^{t}\right)$.
- Assume there are $i=1, \ldots, l$ consumers, each of whom receives a stochastic endowment $y_{t}^{i}\left(s^{t}\right)$.
- They purchase a consumption plan that stipulates consumption for any history of shocks and yields:

$$
U_{i}\left(c^{i}\right)=\sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u_{i}\left[c_{t}^{i}\left(s^{t}\right)\right] \pi_{t}\left(s^{t}\right)
$$

- These contracts yield expected lifetime utility, where $\lim _{s \rightarrow 0} u_{i}^{\prime}(c)=+\infty$

Complete markets

- They purchase a consumption plan that stipulates consumption for any history of shocks and yields:

$$
U_{i}\left(c^{i}\right)=\sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u_{i}\left[c_{t}^{i}\left(s^{t}\right)\right] \pi_{t}\left(s^{t}\right)
$$

- And are subject to a feasibility constraint:

$$
\sum_{i} c_{t}^{i}\left(s^{t}\right) \leq \sum_{i} y_{t}^{i}\left(s^{t}\right) \forall t, s^{t}
$$

- These contracts determine how to split resources at each t.
- i.e., they insure individuals ex-ante against income risk.

Contingent claims trading structure

- Arrow-Debreu structure: contract at time $t=0$ on every possible sequence of shocks.

- Each node represents a possible sequence of shocks.
- A consumption plan would specify consumption at each node at each time.

Sequential trading structure

- Arrow securities: re-contract at ever t given the history of shocks s^{t}.

- At $t=2$, contract for two possible realizations.

Trading structure

- Arrow-Debreu structure: contract at time $t=0$ on every possible sequence of shocks.
- Arrow securities: re-contract at ever t given the history of shocks s^{t}.
- Do these trading structure yield the same equilibrium allocation? Yes.
- Important property:
- Under either structure, allocations are a function of the aggregate state only (\& initial conditions).
- i.e., allocation depends only on $\sum_{i=1}^{l} y_{t}^{i}\left(s^{t}\right)$
- Leads to representative agent structure.

Planner's Problem

- First, we will find the Pareto optimal allocation.
- i.e., the allocation from solving the Social Planner's problem:

$$
\max _{c^{i}} W=\sum_{i=1}^{\prime} \lambda_{i} U_{i}\left(c^{i}\right)
$$

- where λ_{i} is a "Pareto weight," i.e., how much Planner values individual i relative to others.
- Constrained maximization:

$$
L=\sum_{t=0}^{\infty} \sum_{s^{t}}\left\{\sum_{i=1}^{l} \lambda_{i} \beta^{t} u_{i}\left(c_{t}^{i}\right) \pi_{t}\left(s^{t}\right)+\theta_{t}\left(s^{t}\right) \sum_{i=1}^{l}\left[y_{t}^{i}\left(s^{t}\right)-c_{t}^{i}\left(s^{t}\right)\right]\right\}
$$

- i.e., maximize weighted expected utility subject to the feasibility constraint (multiplier θ)

Planner's Problem

- Constrained maximization:

$$
L=\sum_{t=0}^{\infty} \sum_{s^{t}}\left\{\sum_{i=1}^{\prime} \lambda_{i} \beta^{t} u_{i}\left(c_{t}^{i}\right) \pi_{t}\left(s^{t}\right)+\theta_{t}\left(s^{t}\right) \sum_{i=1}^{l}\left[y_{t}^{i}\left(s^{t}\right)-c_{t}^{i}\left(s^{t}\right)\right]\right\}
$$

- FOC in c_{t}^{i} :

$$
\beta^{t} u_{i}^{\prime}\left(c_{t}^{i}\left(s^{t}\right)\right) \pi_{t}\left(s^{t}\right)=\lambda_{i}^{-1} \theta_{t}\left(s^{t}\right)
$$

- How is this allocated across consumers?

$$
\begin{aligned}
\frac{u_{i}^{\prime}\left(c_{t}^{i}\left(s^{t}\right)\right)}{u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)} & =\frac{\lambda_{1}}{\lambda_{i}} \\
\rightarrow c_{t}^{i}\left(s^{t}\right) & =u_{i}^{\prime-1}\left(\lambda_{i}^{-1} \lambda_{1} u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)\right)
\end{aligned}
$$

- Often, assume $\lambda_{i}=\lambda_{1} \forall i \rightarrow c_{t}^{i}\left(s^{t}\right)=u_{i}^{\prime-1}\left(u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)\right)$

Planner's Problem

- Allocation:

$$
c_{t}^{i}\left(s^{t}\right)=u_{i}^{\prime-1}\left(\lambda_{i}^{-1} \lambda_{1} u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)\right)
$$

- Sub into resource constraint:

$$
\sum_{i} u_{i}^{\prime-1}\left(\lambda_{i}^{-1} \lambda_{1} u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)\right)=\sum_{i} y_{t}^{i}\left(s^{t}\right)
$$

- i.e., the resource allocation depends only on aggregate endowment and weights of each consumer.

Decentralized allocations

- We know that the optimal allocation is given by

$$
\sum_{i} u_{i}^{\prime-1}\left(\lambda_{i}^{-1} \lambda_{1} u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)\right)=\sum_{i} y_{t}^{i}\left(s^{t}\right)
$$

- Can we achieve the same allocation under different trading regimes?
- Specifically, does the decentralized economy achieve the same allocation?

Consumer's problem

- Consumer's problem: maximize

$$
U_{i}\left(c^{i}\right)=\sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u_{i}\left[c_{t}^{i}\left(s^{t}\right)\right] \pi_{t}\left(s^{t}\right)
$$

- subject to

$$
\sum_{t=0}^{\infty} \sum_{s^{t}} q_{t}^{0}\left(s^{t}\right) c_{t}^{i}\left(s^{t}\right) \leq \sum_{t=0}^{\infty} \sum_{s^{t}} q_{t}^{0}\left(s^{t}\right) y_{t}^{i}\left(s^{t}\right)
$$

Consumer's problem

- Yields the following:

$$
\begin{aligned}
\beta^{t} u_{i}^{\prime}\left[c_{t}^{i}\left(s^{t}\right)\right] \pi_{t}\left(s^{t}\right) & =\mu_{i} q_{t}^{0}\left(s^{t}\right) \\
\frac{u_{i}^{\prime}\left(c_{t}^{i}\left(s^{t}\right)\right)}{u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)} & =\frac{\mu_{i}}{\mu_{1}}
\end{aligned}
$$

- which implies

$$
\sum_{i} u_{i}^{\prime-1}\left(\mu_{1}^{-1} \mu_{i} u_{1}^{\prime}\left(c_{t}^{1}\left(s^{t}\right)\right)\right)=\sum_{i} y_{t}^{i}\left(s^{t}\right)
$$

Competitive Equilibrium

Definition A competitive equilibrium is a price system $\left\{q_{t}^{0}\left(s^{t}\right)\right\}_{t=0}^{\infty}$ and allocation $\left\{c^{i *}\right\}_{i \in \mathcal{I}}$ such that

1. Given a price system, each individaul $i \in \mathcal{I}$ solves the following problem:

$$
\begin{aligned}
\left\{c_{t}^{i *}\left(s^{t}\right)\right\}_{t=0}^{\infty}= & \arg \max _{\left\{c_{t}^{i}\left(s^{t}\right)\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u\left(c_{t}^{i}\left(s^{t}\right)\right) \pi_{t}\left(s^{t}\right) \\
& \text { s.t. } \sum_{t=0}^{\infty} \sum_{s^{t}} q_{t}^{0}\left(s^{t}\right) c_{t}^{i}\left(s^{t}\right) \leq \sum_{t=0}^{\infty} \sum_{s^{t}} q_{t}^{0}\left(s^{t}\right) y_{t}^{i}\left(s^{t}\right)
\end{aligned}
$$

2. On every history s^{t} at time t, market clears

$$
\sum_{i \in \mathcal{I}} c_{t}^{i *}\left(s^{t}\right)=\sum_{i \in \mathcal{I}} y_{t}^{i}\left(s^{t}\right)
$$

Rules out economies with externalities, incomplete markets, etc.

First Welfare Theorem

- First welfare theorem:

Let c be a competitive equilibrium allocation. Then c is pareto efficient.

- Equivalence: Competitive equilibrium is a specific Pareto optimal allocation in which $\lambda_{i}=\mu_{i}^{-1}$.

Sequential trading

- Now, we will consider an economy with sequential trades.
- i.e., each period agents meet and trade state-contingent bonds
- Recall from asset pricing:

$$
p_{t}=\beta E_{t}\left(\frac{u^{\prime}\left(d_{t+1}\right)}{u^{\prime}\left(d_{t}\right)}\left(p_{t+1}+d_{t+1}\right)\right)
$$

- where the expectation is over realizations of s_{t+1}, which determines d_{t+1}.
- Price is determined by payout of asset across all different realizations.
- i.e., asset that provides good return across all realizations: expensive.

Market clearing

- Recall from asset pricing that the net bond position of the economy equaled zero.
- i.e., $\sum_{i} b_{t+1}^{i}=0$.
- Same in this context.
- Some are borrowing and some are saving (in principle, if there were heterogeneity).
- This must net to zero.

Restriction: No Ponzi Schemes

- Must ensure that agents never take out too much debt.
- Natural debt limit:

$$
A_{t}^{i}\left(s^{t}\right)=\sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} q_{\tau}^{t}\left(s^{\tau}\right) y_{\tau}^{i}\left(s^{\tau}\right)
$$

- This is the amount that the agent could borrow and still commit to repay.
- Rules out Ponzi schemes.

Sequential problem

- Consumer's problem: maximize

$$
U_{i}\left(c^{i}\right)=\sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} u_{i}\left[c_{t}^{i}\left(s^{t}\right)\right] \pi_{t}\left(s^{t}\right)
$$

- subject to

$$
\begin{aligned}
c_{t}^{i}+\sum_{s^{t+1}} Q_{t}\left(s_{t+1} \mid s^{t}\right) a_{t+1}^{i}\left(s_{t+1}, s^{t}\right) & \leq y_{t}^{i}\left(s^{t}\right)+a_{t}^{i}\left(s^{t}\right) \\
-t+1^{i}\left(s^{t+1}\right) & \geq-A_{t+1}^{i}\left(s^{t+1}\right)
\end{aligned}
$$

- where Q_{t} is a pricing kernel: price of one unit of consumption given realization s_{t+1} and history s^{t}.

Sequential allocation

- Solving the previous problem yields the following Euler Equation:

$$
Q_{t}\left(s_{t+1} \mid s^{t}\right)=\beta\left(\frac{u^{\prime}\left(c_{t+1}^{i}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}^{i}\left(s^{t}\right)\right)} \pi_{t}\left(s^{t+1} \mid s^{t}\right)\right)
$$

- Same as the asset pricing specification from earlier.
- Taking the expectation of this expression across all possible realizations of s^{t+1} yields the price, Q.

Sequential Trading - Competitive Equilibrium

Definition A competitive equilibrium is a price system $\left\{\left\{Q_{t}\left(s_{t+1} \mid s^{t}\right)\right\}_{s_{t+1} \in s}\right\}_{t=0}^{\infty}$, an allocation
$\left\{\left\{\tilde{c}_{t}^{i}\left(s^{t}\right),\left\{\tilde{a}_{t+1}^{i}\left(s_{t+1}, s^{t}\right)\right\}_{s_{t+1} \in s}\right\}_{t=0}^{\infty}\right\}_{i \in \mathcal{I}}$, an initial distribution of wealth
$\left\{a_{0}^{i}\left(s_{0}\right)=0\right\}_{i \in \mathcal{I}}$, and a collection of natural borrowing limits
$\left\{\left\{\left\{A_{t+1}^{i}\left(s_{t+1}, s^{t}\right)\right\}_{s_{t+1} \in S}\right\}_{t=0}^{\infty}\right\}_{i \in \mathcal{I}}$ such that

1. Given a price system, an initial distribution of wealth, and a collection of natural borrowing limits, each individual $i \in \mathcal{I}$ solves the workers problem.
2. On every history s^{t} at time t, markets clear.

$$
\begin{aligned}
\sum_{i \in \mathcal{I}} c_{t}^{i}\left(s^{t}\right) & =\sum_{i \in \mathcal{I}} y_{t}^{i}\left(s^{t}\right) \\
\sum_{i \in \mathcal{I}} a_{t+1}^{i}\left(s_{t+1}, s^{t}\right) & =0 \forall s_{t+1} \in S
\end{aligned}
$$

(Commodity market clearing)
(Asset market clearing)

Equivalence of allocations

- Is this allocation also a time-0 trading allocation?
- Yes. Suppose that the pricing kernel takes the following form

$$
\begin{aligned}
& q_{t+1}^{0}\left(s^{t+1}\right)=Q_{t}\left(s_{t+1} \mid s^{t}\right) q_{t}^{0}\left(s^{t}\right) \\
& \frac{q_{t+1}^{0}\left(s^{t+1}\right)}{q_{t}^{0}\left(s^{t}\right)}=Q_{t}\left(s_{t+1} \mid s^{t}\right)
\end{aligned}
$$

- That is, the price of 1 unit of consumption in period $t+1$ is the same regardless of whether you purchased that consumption last period or in period 0 .
- When this holds, sequential allocation coincides with time-0 trading allocation, subject to initial distribution.
- Formal proof (check on your own):

Conclusion

- Midterm next Thursday (after break)!
- Check website for homework.

Equivalence of allocations

$$
\begin{aligned}
Q_{t}\left(s_{t+1} \mid s^{t}\right) & =\frac{q_{t+1}^{0}\left(s^{t+1}\right)}{q_{t}^{0}\left(s^{t}\right)} \Rightarrow \beta \frac{u^{\prime}\left(\tilde{c}_{t+1}^{i}\left(s^{t+1}\right)\right)}{u^{\prime}\left(\tilde{c}_{t}^{i}\left(s^{t}\right)\right)} \pi_{t}\left(s^{t+1} \mid s^{t}\right) \\
& =\beta \frac{u^{\prime}\left(c_{t+1}^{i *}\left(s^{t+1}\right)\right)}{u^{\prime}\left(c_{t}^{i *}\left(s^{t}\right)\right)} \pi_{t}\left(s^{t+1} \mid s^{t}\right)
\end{aligned}
$$

Guess for portfolio

On every history s^{t} at time t,

$$
\tilde{a}_{t+1}^{i}\left(s_{t+1}, s^{t}\right)=\sum_{\tau=t+1}^{\infty} \sum_{s^{\tau} \mid\left(s_{t+1}, s^{t}\right)} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t+1}^{0}\left(s^{t+1}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right)\right) \forall s_{t+1} \in s
$$

Value of this portfolio expressed in terms of the date t, history s^{t} consumption good is $\sum_{s_{t+1} \in S} \tilde{a}_{t+1}^{i}\left(s_{t+1}, s^{t}\right) Q_{t}\left(s_{t+1} \mid s^{t}\right)=$

$$
\begin{aligned}
& =\sum_{s_{t+1} \in S} \sum_{\tau=t+1}^{\infty} \sum_{s^{\tau} \mid\left(s_{t+1}, s^{t}\right)} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t+1}^{0}\left(s^{t+1}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{t}^{i}\left(s^{\tau}\right)\right) Q_{t}\left(s_{t+1} \mid s^{t}\right) \\
& =\sum_{s_{t+1} \in S} \sum_{\tau=t+1}^{\infty} \sum_{s^{\tau} \mid\left(s_{t+1}, s^{t}\right)} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t+1}^{0}\left(s^{t+1}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{t}^{i}\left(s^{\tau}\right)\right) \frac{q_{t+1}^{0}\left(s^{t+1}\right)}{q_{t}^{0}\left(s^{t}\right)} \\
& =\sum_{\tau=t+1}^{\infty} \sum_{s^{\tau} \mid s^{t}} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t}^{0}\left(s^{t}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{t}^{i}\left(s^{\tau}\right)\right)
\end{aligned}
$$

Verify portfolio

On history $s^{0}=s_{0}$ at time $t=0$, assume that $a_{0}^{i}\left(s_{0}\right)=0$. Then

$$
\begin{aligned}
\tilde{c}_{0}^{i}\left(s_{0}\right)+\sum_{s_{1} \in S} \tilde{a}_{1}^{i}\left(s_{1}, s_{0}\right) Q_{1}\left(s_{1} \mid s_{0}\right) & =y_{0}^{i}\left(s_{0}\right)+0 \\
\tilde{c}_{0}^{i}\left(s_{0}\right)+\sum_{\tau=1}^{\infty} \sum_{s^{\tau} \mid s_{0}} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{0}^{0}\left(s_{0}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{t}^{i}\left(s^{\tau}\right)\right) & =y_{0}^{i}\left(s_{0}\right)+0 \\
q_{0}^{0}\left(s_{0}\right) c_{0}^{i *}\left(s_{0}\right)+\sum_{\tau=1}^{\infty} \sum_{s^{\tau} \mid s_{0}} q_{\tau}^{0}\left(s^{\tau}\right)\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{t}^{i}\left(s^{\tau}\right)\right)= & q_{0}^{0}\left(s_{0}\right) y_{0}^{i}\left(s_{0}\right) \\
& \left(\text { if } \tilde{c}_{0}^{i}\left(s_{0}\right)=c_{0}^{i *}\left(s_{0}\right)\right) \\
\sum_{t=0}^{\infty} \sum_{s^{t}} q_{t}^{0}\left(s^{t}\right) y_{t}^{i}\left(s^{t}\right)= & \sum_{t=0}^{\infty} \sum_{s^{t}} q_{t}^{0}\left(s^{t}\right) c_{t}^{i *}\left(s^{t}\right)
\end{aligned}
$$

Therefore, given $\tilde{c}_{0}^{i}\left(s_{0}\right)=c_{0}^{i *}\left(s_{0}\right)$, portfolio $\left\{\tilde{a}_{1}^{i}\left(s_{1}, s_{0}\right)\right\}_{s_{1} \in S}$ is affordable.

Verify portfolio

On history s^{t} at time t, assume that

$$
\begin{aligned}
& \tilde{a}_{t}^{i}\left(s^{t}\right)=\sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t}^{0}\left(s^{t}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right)\right) \text {. Then } \\
& \tilde{c}_{t}^{i}\left(s^{t}\right)+\sum_{s_{t+1} \in S} \tilde{a}_{t+1}^{i}\left(s_{t+1}, s^{t}\right) Q_{t}\left(s_{t+1} \mid s^{t}\right)=y_{t}^{i}\left(s^{t}\right) \\
& \quad+\sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t}^{0}\left(s^{t}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right)\right) \\
& \tilde{c}_{t}^{i}\left(s^{t}\right)+\sum_{\tau=t+1}^{\infty} \sum_{s^{\tau} \mid s^{t}} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t}^{0}\left(s^{t}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{t}^{i}\left(s^{\tau}\right)\right)=y_{t}^{i}\left(s^{t}\right) \\
& \\
& +\sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} \frac{q_{\tau}^{0}\left(s^{\tau}\right)}{q_{t}^{0}\left(s^{t}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right)\right)
\end{aligned}
$$

Verify portfolio

On history s^{t} at time t, assume that

$$
\tilde{a}_{t}^{i}\left(s^{t}\right)=\sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} \frac{q_{q}^{0}\left(s^{\tau}\right)}{q_{t}^{(}\left(s^{t}\right)}\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right)\right) \text {. Then }
$$

$$
\begin{aligned}
q_{t}^{0}\left(s^{t}\right) c_{t}^{i *}\left(s^{t}\right)+ & \sum_{\tau=t+1}^{\infty} \sum_{s^{\tau} \mid s^{t}} q_{\tau}^{0}\left(s^{\tau}\right)\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{t}^{i}\left(s^{\tau}\right)\right)=q_{t}^{0}\left(s^{t}\right) y_{t}^{i}\left(s^{t}\right) \\
& +\sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} q_{\tau}^{0}\left(s^{\tau}\right)\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right)\right) \quad\left(\text { if } \tilde{c}_{t}^{i}\left(s^{t}\right)=c_{t}^{i *}\left(s^{t}\right)\right) \\
& \rightarrow \sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} q_{\tau}^{0}\left(s^{\tau}\right)\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right)\right)=\sum_{\tau=t}^{\infty} \sum_{s^{\tau} \mid s^{t}} q_{\tau}^{0}\left(s^{\tau}\right)\left(c_{\tau}^{i *}\left(s^{\tau}\right)-y_{\tau}^{i}\left(s^{\tau}\right.\right.
\end{aligned}
$$

Therefore, given $\tilde{c}_{t}^{i}\left(s^{t}\right)=c_{t}^{i *}\left(s^{t}\right)$, portfolio $\left\{\tilde{a}_{t+1}^{i}\left(s_{t+1}, s^{t}\right)\right\}_{s_{t+1} \in s}$ is affordable.

```
4 back
```

