Macro II

Professor Griffy

UAlbany

Spring 2024

Introduction

- There is a new homework online.
- All should have access to the cluster.
- Today:
- Talk about Lucas Critique and Rational Expectations
- Use simple two period model
- Show intuition behind Lucas Critique.
- Lecture largely based on Eric Sims' (Notre Dame) notes.

Lucas Critique Overview

- Some history:
- Prior to the late 1970s, macroeconomists had no systematic way of modeling consumer expectations.
- They found empirical relationships between equilibrium objects and interpreted these as causal.
- This is a problem!
- (Old) Phillips Curve: inverse relationship between inflation and unemployment
\checkmark more money \rightarrow more demand \rightarrow more employment.
- This led policy makers to institute persistent inflation.
- But this broke down in the 70s: we had stagflation: inflation and unemployment.
- The reason is that consumers came to expect an increase in prices and adjusted their demand.
- Lucas Critique (broadly):
- Need to use "deep" (structural) parameters to inform policy.
- Otherwise policy may affect these parameters.

Basic two-period model

- A (very) basic consumption-savings model:

$$
\begin{gather*}
\max _{c_{1}, c_{2}} u\left(c_{1}\right)+\beta u\left(c_{2}\right) \tag{1}\\
\text { s.t. } c_{1}+\frac{c_{2}}{1+r}=w_{1}+\frac{w_{2}}{1+r} \tag{2}
\end{gather*}
$$

- Simple set-up:
- Household faces an endowment w_{1}, w_{2}, which are known and fixed.
- r is fixed over time, household takes as given.
- Standard definitions for $u: u^{\prime}>0, u^{\prime \prime}<0, u^{\prime}(0)=\infty$

Basic two-period model

- A (very) basic consumption-savings model:

$$
\begin{align*}
& V=\max _{c_{1}, c_{2}} u\left(c_{1}\right)+\beta u\left(c_{2}\right) \tag{3}\\
& \text { s.t. } c_{1}+\frac{c_{2}}{1+r}=w_{1}+\frac{w_{2}}{1+r} \tag{4}
\end{align*}
$$

- Solve by first finding the Euler Equation:

$$
\begin{align*}
\frac{\partial V}{\partial c_{1}} & =u^{\prime}\left(c_{1}\right)-\lambda=0 \tag{5}\\
\frac{\partial V}{\partial c_{2}} & =\beta u^{\prime}\left(c_{2}\right)-\frac{\lambda}{1+r}=0 \tag{6}\\
\rightarrow u^{\prime}\left(c_{1}\right) & =\beta(1+r) u^{\prime}\left(c_{2}\right) \tag{7}
\end{align*}
$$

- We know dynamics, now need to pin down c_{t} using budget constraint (boundary condition).

Basic two-period model

- Dynamics and budget:

$$
\begin{align*}
u^{\prime}\left(c_{1}\right) & =\beta(1+r) u^{\prime}\left(c_{2}\right) \tag{8}\\
\text { s.t. } c_{1}+\frac{c_{2}}{1+r} & =w_{1}+\frac{w_{2}}{1+r} \tag{9}
\end{align*}
$$

- Assume log utility: $u(c)=\ln (c)$.
- This yields

$$
\begin{align*}
& \frac{1}{c_{1}}=\beta(1+r) \frac{1}{c_{2}} \tag{10}\\
& c_{1}=\frac{1}{1+\beta}\left(w_{1}+\frac{w_{2}}{1+r}\right) \tag{11}
\end{align*}
$$

- What does this tell us?

Basic two-period model

$$
\begin{equation*}
c_{1}=\frac{1}{1+\beta}\left(w_{1}+\frac{w_{2}}{1+r}\right) \tag{12}
\end{equation*}
$$

- This tells us that consumption today is a function of
- income today (not surprising)
- income in the future (possibly a problem)
- Suppose there is a recession.
- A policymaker wants to implement a tax cut based on empirical evidence

Basic two-period model

$$
\begin{equation*}
c_{1}=\frac{1}{1+\beta}\left(w_{1}+\frac{w_{2}}{1+r}\right) \tag{13}
\end{equation*}
$$

- Policymaker:
- Run the following regression:

$$
\begin{equation*}
c_{1}=\alpha+\gamma w_{t}+u_{t} \tag{14}
\end{equation*}
$$

- Want to stimulate the economy.
- Give people money, consumption will increase by γ !

Basic two-period model

$$
\begin{align*}
& c_{1}=\frac{1}{1+\beta}\left(w_{1}+\frac{w_{2}}{1+r}\right) \tag{15}\\
& \hat{c}_{1}=\alpha+\gamma w_{t} \tag{16}
\end{align*}
$$

- Assume $\frac{\partial w_{2}}{\partial w_{1}}=0$ (i.e., uncorrelated). Then

$$
\begin{align*}
& \frac{\partial c_{1}}{\partial w_{1}}=\frac{1}{1+\beta} \tag{17}\\
& \frac{\partial \hat{c}_{1}}{\partial w_{1}}=\alpha \tag{18}
\end{align*}
$$

- In this context, $\alpha=\frac{1}{1+\beta}$. We're good!

Basic two-period model

$$
\begin{align*}
& c_{1}=\frac{1}{1+\beta}\left(w_{1}+\frac{w_{2}}{1+r}\right) \tag{19}\\
& \hat{c}_{1}=\alpha+\gamma w_{t} \tag{20}
\end{align*}
$$

- Assume $\frac{\partial w_{2}}{\partial w_{1}}=0$. Then

$$
\begin{align*}
& \frac{\partial c_{1}}{\partial w_{1}}=\frac{1}{1+\beta}\left(1+\frac{\frac{\partial w_{2}}{\partial w_{1}}}{1+r}\right) \tag{21}\\
& \frac{\partial \hat{c}_{1}}{\partial w_{1}}=\alpha \tag{22}
\end{align*}
$$

- If income was positively correlated (AR, etc.), we're not going to get the response we want.

Lucas critique overview

- In this context, policymakers might over predict the response of consumption.
- Why? Because consumers understand that this is a temporary increase in income.
- They won't believe that w_{2} will increase.
- Therefore, they will respond less than predicted by the model.
- This is the crux of the Lucas Critique: that you need to find deep parameters that don't change with consumer behavior.

Lucas critique

- Lucas made his critique in the context of monetary policy.
- There had been multiple decades of inflation, aimed at reducing unemployment.
- Consumers eventually built in the expectation of inflation and this empirical relationship no longer held.
- Let's use a simple monetary policy model to understand what happened.

Phillips Curve

- Suppose that inflation is characterized by the following difference equation:

$$
\begin{equation*}
\pi_{t}=\theta\left(u_{t}-u^{*}\right)+\beta \mathbb{E}\left(\pi_{t+1}\right) \tag{23}
\end{equation*}
$$

- What does this tell us?
- If we hold expectations fixed,
- an increase in current inflation, π_{t},
- leads to a θ reduction in unemployment (in percentage points).
- θ was observed to be negative, ie inflation reduced unemployment.

Policymaker

$$
\begin{equation*}
\pi_{t}=\theta\left(u_{t}-u^{*}\right)+\beta \mathbb{E}\left(\pi_{t+1}\right) \tag{24}
\end{equation*}
$$

- Suppose that an econometrician ran the following specification:

$$
\begin{equation*}
\pi_{t}=\gamma\left(u_{t}-u^{*}\right)+\epsilon_{t} \tag{25}
\end{equation*}
$$

- They conclude that $\gamma<0$.
- They tell the policymaker to raise inflation to reduce unemployment.

What happens?

$$
\begin{align*}
& \pi_{t}=\theta\left(u_{t}-u^{*}\right)+\beta \mathbb{E}\left(\pi_{t+1}\right) \tag{26}\\
& \pi_{t}=\gamma\left(u_{t}-u^{*}\right)+\epsilon_{t} \tag{27}
\end{align*}
$$

- Well, as long as expectations don't change, the empirical specification will appear to hold.
- But if they change, consequences!
- An increase in inflation can lead to one of two things:

1. a decrease in unemployment (good!) or
2. an increase in expected future inflation

- and the equation will still hold.
- This is what we saw in the 1970s/1980s.

Log linearization

- Non-linear difference equations are tricky to solve.
- Macroeconomists often log-linearize these difference equations to make them easier to solve.
- Basic idea:
- In some area around the steady state, deviations are small.
- Can approximate using a log-linearized version of the model.
- Will be "wrong," but close as long as deviations stay small.
- Today, short refresher.

Log linearization II

- Take a generic difference equation with a single variable x :

$$
\begin{equation*}
x_{t+1}=A x_{t} \tag{28}
\end{equation*}
$$

- Suppose that $A=1+g$:

$$
\begin{equation*}
x_{t+1}=(1+g) x_{t} \tag{29}
\end{equation*}
$$

- Taking logs of both sides:

$$
\begin{equation*}
\ln \left(x_{t+1}\right)=\ln (1+g)+\ln \left(x_{t}\right) \tag{30}
\end{equation*}
$$

Taylor Series Approximation

- A first-order taylor approximation of a function $f(x)$ around a point x^{*} is given by

$$
\begin{equation*}
f(x) \approx f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(x-x^{*}\right) \tag{31}
\end{equation*}
$$

- If $\left(x-x^{*}\right)$ is small and $f^{\prime \prime}$ is not too large, this approximation is reasonable.
- Idea: we know the value of a function at a particular point
- We can also find the derivative at that point.

Applying this to log-linear approximation

- Taylor series approximation of growth rate $(1+g)$ at $g=0$:

$$
\begin{align*}
\ln (1+g) & \approx \ln (1+0)+\frac{1}{1+0}(1+g-1) \tag{32}\\
& \approx g \tag{33}
\end{align*}
$$

- This means that we can approximate our difference equation as

$$
\begin{align*}
\ln \left(x_{t+1}\right) & =\ln (1+g)+\ln \left(x_{t}\right) \tag{34}\\
& \approx \ln \left(x_{t}\right)+g \tag{35}
\end{align*}
$$

- This insight will prove very useful in solving macro models.

Next Time

- Start dynamic programming.
- Homework due next week, one due the week after.

