Macro II

Professor Griffy

UAlbany

Spring 2024

Introduction

- So far: building tools to think about dynamic models.
- Now (and mostly rest of class):
- Build on those tools to make more applicable to economics.
- Use those tools to model the macroeconomy
- Today:
- Introduce dynamic programming
- Homework due in one week.

Dynamic Programming

- Basic idea:
- We can express macro models in a sequential form.
- If we can write them recursively, we get access to more tools to solve them.
- We will start with a generic representation, give some important theorems, then discuss its use.

Sequential Problem

- We can broadly state most macro (and economics problems in general) as

$$
\begin{aligned}
& \sup _{\left\{x_{t+1}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} r\left(x_{t}, x_{t+1}\right) \\
& \quad \text { s.t. } x_{t+1} \in \Gamma\left(x_{t}\right), t=0,1,2, \ldots \\
& x_{0} \in X \text { given }
\end{aligned}
$$

- A solution tells us x_{t} at any time t.

Recursive Problem

- We want to write the sequential problem recursively

$$
v(x)=\sup _{y \in \Gamma(x)}[r(x, y)+\beta v(y)], \forall x \in X
$$

- We can also find solutions to this problem that solve the sequential problem.
- We can make statements about the existence and uniqueness of those solutions.
- These statements are often easier when expressed this way.

Some definitions

- Metric space: a set S together with a metric (distance function), $\rho: S \times S \Rightarrow R$, such that for all $x, y, z \in S$:

1. $\rho(x, y) \geq 0$, equality iff $x=y$
2. $\rho(x, y)=\rho(y, x)$
3. $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$

- Complete metric space: A metric space (S, ρ) is complete if every Cauchy sequence converge to an element in S.
- Cauchy sequnce: a sequence $\left.\left\{x_{n}\right\}\right|_{n=0} ^{\infty}$ for which $\rho\left(x_{n}, x_{m}\right)<\epsilon$, any $\epsilon>0$ for $n, m \geq N_{\epsilon}$
- i.e., a sequence that gets closer and closer together (think of a model converging to equilibrium).

Contraction Mapping

- If (S, ρ) is a complete metric space and $T: S \Rightarrow S$ is a contraction mapping with modulus β, then

1. T has exactly one fixed point v in S, and
2. for any $v_{0} \in S, \rho\left(T^{n} v_{0}, v\right) \leq \beta^{n} \rho\left(v_{0}, v\right), n=0,1,2, \ldots$

Blackwell's Sufficient Conditions

- Let $X \subseteq R^{\prime}$, and let $B(X)$ be a space of bounded functions $f: X \Rightarrow R$, with the sup norm. Let $T: B(X) \Rightarrow B(X)$ be an operator satisfying

1. (monotonicity) $f, g \in B(X)$ and $f(x) g(x)$, for all $x \in X$, implies $(T f)(x) \leq(T g)(x)$, for all $x \in X$;
2. (discounting) there exists some $\beta \in(0,1)$ such that

$$
[T(f+a)](x) \leq(T f)(x)+\beta a, \text { all } f \in B(X), a \geq 0, x \in X
$$

Blackwell's Sufficient Applied

- Simple problem:

$$
(T v)(k)=\max _{0 \leq y \leq f(k)}\{U[f(k)-y]+\beta v(y)\}
$$

- Monotonicity: $f, g \in B(X)$ and $f(x) g(x)$, for all $x \in X$, implies $(T f)(x) \leq(T g)(x)$, for all $x \in X$;
- define $g(x) \geq v(x)$, then

$$
\begin{aligned}
(T g)(k) & =\max _{0 \leq y \leq f(k)}\{U[f(k)-y]+\beta g(y)\} \\
& \geq \max _{0 \leq y \leq f(k)}\{U[f(k)-y]+\beta v(y)\} \\
& =(T v)(k)
\end{aligned}
$$

- To see, take difference. $g(y) \geq v(y) \rightarrow$ monotone.

Blackwell's Sufficient Applied

- Simple problem:

$$
(T v)(k)=\max _{0 \leq y \leq f(k)}\{U[f(k)-y]+\beta v(y)\}
$$

- (discounting) there exists some $\beta \in(0,1)$ such that

$$
\begin{aligned}
{[T(f+a)](x) \leq } & (T f)(x)+\beta a, \text { all } f \in B(X), a \geq 0, x \in X \\
(T v)(k+a) & =\max _{0 \leq y \leq f(k)}\{U[f(k)-y]+\beta[v(y)+a]\} \\
& =\max _{0 \leq y \leq f(k)}\{U[f(k)-y]+\beta v(y)+\beta a\} \\
& =(T v)(k)+\beta a
\end{aligned}
$$

- Thus, contraction mapping. Existence and uniqueness.

Theorem of the Maximum

- Broadly stated, the problem we face is

$$
\begin{aligned}
& (T v)(x)=\sup _{y}[F(x, y)+\beta v(y)] \\
& \quad \text { s.t. } y \text { feasible given } x
\end{aligned}
$$

- This is just a value function
- With a specified constraint.

Correspondences

- We will define a correspondence $\Gamma(x)$ as
- a set of feasible values of $y \in Y$ for $x \in X$,
- where X can be thought of as the set of possible states
- and Y the set of possible choices.
- The easiest example: the budget constraint.
- There are many feasible choices,
- we will pick on the maximizes the return function.
- Argmax correspondence:
- We define a policy function $G(x)$ as a correspondence, where
- $G(x)=\{y \in \Gamma(x): f(x, y)=h(x)\}$

Compact Sets

- A compact set is a set that

1. is closed: contains all of its limit points.
2. is bounded: all points are within a finite distance of each other.

- Useful: most often applied to choice sets.
- Means that choices are finite and feasible.

Upper and Lower Hemi-Continuity

- Two notions of continuity, (really) loosely:

1. Upper hemi-continuity: any choice y is in the set $\Gamma(x)$ (closed).
2. Lower hemi-continuity: nearby x are in $\Gamma(x)$.
3.3 / Theorem of the Maximum

57

Figure 3.2

- Lower hemi-continuity: x_{2} not Ihc
- Upper hemi-continuity: x_{1} not uhc

Upper and Lower Hemi-Continuity

- Upper hemi-continuity is useful:
- Upper hemi-continuity preserves compactness:
- if $C \subseteq X$ is compact and Γ is uhc,
- $\Gamma(C)$ is compact.
- So if we place restrictions on X, our choice set is still in the correspondence.
- Allows our maximization problems to have solutions.
- If Γ is single-valued and uhc, it is continuous.

Theorem of the Maximum

- (conditions): Let $X \subseteq R^{\prime}$ and $Y \subseteq R^{m}$, let $f: X \times Y \Rightarrow R$ be a continuous function, and let $\Gamma: X \Rightarrow Y$ be a compact-valued and continuous correspondence.
- (implications): Then the function: $h: X \rightarrow R$ defined as $h(x)=\max _{y \in \Gamma(x)} f(x, y)$ and the correspondence $G: X \Rightarrow Y$ defined as $G(x)=\{y \in \Gamma(x): f(x, y)=h(x)\}$ is

1. nonempty,
2. compact-valued, and
3. upper hemi-continuous.

- Why is this useful?
- under a few more assumptions (Γ is convex, f is strictly concave in y)
- we can obtain the maxmized value of f using the control g.
- and as a result, $h(x)$.

Stochastic Dynamic Programming

Returning to our initial definition, let r be the return function and u the control vector with a state that evolves by
$x_{t+1}=h\left(x_{t}, u_{t}, \varepsilon_{t+1}\right)$. The sequential problem looks like

$$
\begin{aligned}
& \quad \max _{\left\{u_{t}\right\}_{t=0}^{\infty}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} r\left(x_{t}, u_{t}\right) \\
& \text { s.t. } \quad x_{t+1}=h\left(x_{t}, u_{t}, \varepsilon_{t+1}\right) \forall t, \quad x_{0} \text { given. }
\end{aligned}
$$

- where ε_{t} is some stochastic process ("shock") with a defined support and some distribution function $F(\varepsilon)$
- we usually take this to be independent and identically distributed or Markov.

The Equilibrium

What is the equilibrium in this environment? What are the equilibrium objects?

- A sequence $\left\{u_{t}\right\}_{t=0}^{\infty}$ for every possible sequence of realizations for ε 's
- This is not so bad insofar as, at any given point in time, the problem has an infinite horizon and looks the same
- The above can be unwieldy, so we can instead find a policy function that tells the agent, at any point in time, what they should do given some observed x_{t} considering what they expect the ε 's to be in the future

The Recursive Problem

Now let's translate this into a recursive problem.

$$
\begin{aligned}
& V(x)=\max _{u}\{r(x, u)+\beta \mathbb{E}[V(\underbrace{h\left(x, u, \varepsilon^{\prime}\right)}_{x^{\prime}}) \mid x]\} \\
& \text { where } \quad \mathbb{E}\left[V\left(h\left(x, u, \varepsilon^{\prime}\right)\right) \mid x\right] \equiv \int_{\xi} V\left(h\left(x, u, \varepsilon^{\prime}\right)\right) d F\left(\varepsilon^{\prime}\right)
\end{aligned}
$$

How do we solve this? The obvious way: FOCs:

$$
\frac{d V(x)}{d u}=0: \quad r_{2}(x, u)+\beta \frac{d}{d u} \mathbb{E}\left[V\left(h\left(x, u, \varepsilon^{\prime}\right)\right) \mid x\right]=0
$$

What allows us to pass the derivative through the expectation?

Differentiation under Integration

If the limits of integration do not depend on the control u, we can directly apply Leibniz's rule for differentiation under the integral (i.e., you just do it).

$$
r_{2}(x, u)+\beta \mathbb{E}\left[\left.\frac{d V\left(h\left(x, u, \varepsilon^{\prime}\right)\right)}{d x^{\prime}} h_{2}\left(x, u, \varepsilon^{\prime}\right) \right\rvert\, x\right]=0
$$

Alas, another roadblock: we do not know what $d V\left(x^{\prime}\right) / d x^{\prime}$ is. Now we'll want to apply the Envelope Theorem. That is, we'll want to find $d V(x) / d x$.

Envelope Theorem

- The envelope theorem always seems to be a source of confusion.
- It states (loosely) that when we are maximizing a value function V with a choice x, we can proceed as though all other choices are at their optimal values.
- Why is this important? Because in principle, u affects the choice of u^{\prime}.

$$
\begin{aligned}
r_{2}(x, u) & +\beta \mathbb{E}\left[\left.\frac{d V\left(h\left(x, u, \varepsilon^{\prime}\right)\right)}{d x^{\prime}} h_{2}\left(x, u, \varepsilon^{\prime}\right) \right\rvert\, x\right]=0 \\
r_{2}(x, u) & +\beta \mathbb{E}\left[\left(r_{1}\left(x^{\prime}, u^{\prime}\right)\right.\right. \\
& \left.\left.+\left(r_{2}\left(x^{\prime}, u^{\prime}\right)+\beta \mathbb{E} \frac{\partial V}{\partial u^{\prime}} h_{2}\left(x^{\prime}, u^{\prime}, \epsilon^{\prime \prime}\right)\right) \frac{\partial u^{\prime}}{\partial x}\right) h_{2}\left(x, u, \varepsilon^{\prime}\right) \mid x\right]=0 \\
r_{2}(x, u) & +\beta \mathbb{E}\left[\left(r_{1}\left(x^{\prime}, u^{\prime}\right)\right.\right. \\
& \left.\left.+\left(r_{2}\left(x^{\prime}, u^{\prime}\right)+\beta \mathbb{E} \frac{\partial V}{\partial u^{\prime}} h_{2}\left(x^{\prime}, u^{\prime}, \epsilon^{\prime \prime}\right)\right) \frac{\partial u^{\prime}}{\partial x}\right) h_{2}\left(x, u, \varepsilon^{\prime}\right) \mid x\right]=0
\end{aligned}
$$

- We can cancel future terms because we optimally pick u^{\prime}
- i.e., we plug in $g(x)$ for u.

Envelope Theorem II

If the problem we are working with can be written in such a way such that the transition does not depend on x, this can be greatly simplified to

$$
\frac{d V(x)}{d x}=r_{1}(x, u) \quad \Longrightarrow \quad \frac{d V\left(x^{\prime}\right)}{d x^{\prime}}=r_{1}\left(x^{\prime}, u^{\prime}\right)
$$

Plugging this back into the FOC gives the stochastic EE.

$$
r_{2}(x, u)+\beta \mathbb{E}\left[r_{1}\left(x^{\prime}, u^{\prime}\right) h_{2}\left(x, u, \varepsilon^{\prime}\right) \mid x\right]=0
$$

Now: return to neoclassical growth. Suppose that capital evolves according to $k^{\prime}=(1-\delta) k+a+\varepsilon$ (where ε is iid), and that there is full depreciation $(\delta=1)$.

Stochastic Neoclassical Growth

$$
\begin{aligned}
& V(k, \varepsilon)=\max _{c, k^{\prime}}\left\{\ln (c)+\beta \mathbb{E}\left[V\left(k^{\prime}, \varepsilon^{\prime}\right)\right]\right\} \quad \text { s.t. } \quad c=k^{\alpha}-k^{\prime}+\varepsilon \\
& \Longrightarrow \quad V(k, \varepsilon)=\max _{k^{\prime}}\left\{\ln \left(k^{\alpha}-k^{\prime}+\varepsilon\right)+\beta \mathbb{E}\left[V\left(k^{\prime}, \varepsilon^{\prime}\right)\right]\right\}
\end{aligned}
$$

The FOC is given by

$$
\frac{1}{k^{\alpha}-k^{\prime}+\varepsilon}=\beta \mathbb{E}\left[\frac{d V\left(k^{\prime}, \varepsilon^{\prime}\right)}{d k^{\prime}}\right],
$$

where we passed the derivative through the integral using Leibniz's rule.

Solving

Now for the Envelope Theorem.

$$
\frac{d V(k, \varepsilon)}{d k}=\frac{\alpha k^{\alpha-1}}{k^{\alpha}-k^{\prime}+\varepsilon} \quad \Longrightarrow \quad \frac{d V\left(k^{\prime}, \varepsilon^{\prime}\right)}{d k^{\prime}}=\frac{\alpha k^{\alpha-1}}{k^{\prime \alpha}-k^{\prime \prime}+\varepsilon^{\prime}}
$$

Plugging this back into the FOC, we have the EE (which we can rewrite however we want).

$$
\begin{aligned}
\frac{1}{k^{\alpha}-k^{\prime}+\varepsilon} & =\beta \mathbb{E}\left[\frac{\alpha k^{\prime \alpha-1}}{k^{\prime \alpha}-k^{\prime \prime}+\varepsilon^{\prime}}\right] \\
\frac{1}{c} & =\beta \mathbb{E}\left[\frac{\alpha k^{\prime \alpha-1}}{c^{\prime}}\right]
\end{aligned}
$$

Next Time

- Next: Permanent Income and Consumption Smoothing
- Homework due next Thursday.
- I may be out of town next Thursday. Will let you know whether virtual or canceled.

