Macro II

Professor Griffy

UAlbany

Spring 2024

Introduction

- Midterm in a week!
- Homework next Tuesday.
- ► Today: Real Business Cycle Model

Basic RBC Model

Household solves

$$\max_{\{C_t, I_t, L_t, K_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t N_t \left[\ln \left(\frac{C_t}{N_t} \right) + \chi \frac{(1 - L_t/N_t)^{1-\gamma} - 1}{1 - \gamma} \right]$$
s.t. $C_t + I_t = r_t K_t + W_t L_t$, (BC)
 $K_{t+1} = (1 - \delta) K_t + I_t$, (CA)
 $L_t \in [0, N_t]$,
 K_0 given, $C_t \ge 0$.

- ▶ Parameter restrictions: $\chi > 0$, $\gamma \ge 0$, $0 < \beta < 1$
- ▶ $1 L_t/N_t$ is per capita leisure
- Note that $K_t < 0$ represents borrowing

Basic RBC Model II

Assume constant growth in population and productivity

$$\begin{aligned} & \mathcal{N}_t &= \mathcal{N}_0 \mathcal{N}^t, \quad \mathcal{N}_0, \mathcal{N} > 0, \quad \beta \mathcal{N} < 1, \\ & \mathcal{A}_t &= \mathcal{A}_0 \mathcal{A}^t, \quad \mathcal{A}_0, \mathcal{A} > 0. \end{aligned}$$

The per-effective-worker problem becomes:

$$\max_{\substack{\{c_t, k_{t+1}, \ell_t\}_{t=0}^{\infty} \\ s.t. \quad c_t + ANk_{t+1} = R_t k_t + w_t \ell_t, \\ \ell_t \in [0, 1]; \quad k_0 \text{ given}, \quad c_t \ge 0, \\ \lim_{J \to \infty} \left(\prod_{j=1}^{J-1} R_{t+j}^{-1} \right) A_{t+J} N_{t+J} k_{t+J} = 0. }$$

Solution

► The first order conditions are

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}, \qquad (EE)$$
$$u'(A_t c_t) A_t w_t = v' (1 - \ell_t)$$
$$\Leftrightarrow \frac{1}{c_t} w_t = \chi (1 - \ell_t)^{-\gamma}. \qquad (LL)$$

Euler equation and "portfolio allocation"

Effect of interest rate changes on savings

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}$$

Substitution effect: Increasing R_{t+1} lowers the price of future consumption, inducing substitution into the cheaper good (future consumption), inducing more saving

Income effect

- Positive assets: Increasing R_{t+1} raises future income and consumption, lowers future MU_C, inducing less savings
- Negative assets: Increasing R_{t+1} reduces future income and consumption, raises future MU_C, inducing more savings

Effect of interest rate changes on savings

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}$$

General (empirical) consensus

- Consumers are net savers: the aggregate income effect of higher interest rates is to lower saving
- The substitution effect weakly dominates implying that savings increases in interest rates

Labor-leisure tradeoff

$$\frac{1}{c_t} w_t = \chi \left(1 - \ell_t \right)^{-\gamma}$$

$$\blacktriangleright MU_C \times wage = MU_L$$

- Wealth effects: Holding w_t constant, higher permanent income raises current consumption, lowers marginal benefit of working
 - Higher assets
 - Higher current or future non-labor income
 - Higher current or future labor income
 - Increasing non-labor component of permanent income lowers labor supply

Effects of increasing the current wage $(MU_C \times wage = MU_L)$

$$\frac{1}{c_t}w_t = \chi \left(1 - \ell_t\right)^{-\gamma}$$

- Substitution effect: holding MU_C constant, and raising w_t increases marginal benefit of working
- Income effect: raising w_t increases y^P_t, lowers MU_C and marginal benefit of working

General (empirical) consensus

$$\frac{1}{c_t}w_t = \chi \left(1 - \ell_t\right)^{-\gamma}$$

- Temporary wage increases generate more hours due to small income effect
- Permanent wage increases generate no more hours because income and substitution effects offset. Consistent with long-term data where wage rises but labor hours do not
- Our specification delivers this

Labor supply curve

Rearrange (LL) to get

$$\ell_t = 1 - (c_t \chi)^{1/\gamma} w_t^{-1/\gamma}.$$

Frisch supply curve

$$\ell_t = f(w_t, MU_C) = f(w_t, y_t^P).$$

- Consider effects of changing wages with MU_C held constant
- Wealth effects ignored
- Note: MU_C can depend on things besides y^P_t, although it does not here

Intertemporal elasticity of substitution of labor (IES_L or Frisch elasticity)

 Measures willingness to vary labor over time, holding MU_C (wealth) constant

$$IES_{L} = \left. \frac{d \ln \left(\ell_{1} / \ell_{2} \right)}{d \ln \left(w_{1} / w_{2} \right)} \right|_{MU_{C}}$$

Derivation

$$\frac{1}{c_t} = \beta A^{-1} \frac{1}{c_{t+1}} R_{t+1},$$
 (EE)
$$\frac{1}{c_t} w_t = \chi (1 - \ell_t)^{-\gamma}.$$
 (LL)

► Combine (EE) and (LL)

$$\chi \frac{(1-\ell_1)^{-\gamma}}{w_1} = \beta A^{-1} \chi \frac{(1-\ell_2)^{-\gamma}}{w_2} R_2.$$

Portfolio Allocation

- Note that the household smooths leisure as well as consumption
- ▶ For example, interest rates affect labor supply
- Rearrange the previous equation

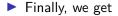
$$\begin{split} \beta A^{-1} R_2 \left(\frac{w_1}{w_2} \right) &= \frac{(1-\ell_1)^{-\gamma}}{(1-\ell_2)^{-\gamma}}, \\ \ln \left(\beta A^{-1} R_2 \right) + \ln \left(\frac{w_1}{w_2} \right) &= -\gamma \ln \left(1-\ell_1 \right) + \gamma \ln \left(1-\ell_2 \right), \\ &= -\gamma \left[\ln \left(1-\exp \left(\ln \ell_1 \right) \right) \right. \\ &- \ln \left(1-\exp \left(\ln \ell_2 \right) \right) \right]. \end{split}$$

Implicitly differentiate:

$$d\ln\left(\frac{w_1}{w_2}\right) = \gamma \frac{\exp\left(\ln\left(\ell_1\right)\right)}{1 - \exp\left(\ln\left(\ell_1\right)\right)} d\ln\left(\ell_1\right)$$
$$-\gamma \frac{\exp\left(\ln\left(\ell_2\right)\right)}{1 - \exp\left(\ln\left(\ell_2\right)\right)} d\ln\left(\ell_2\right).$$

 $\blacktriangleright \text{ Now assume that } \ell_1 = \ell_2 = \ell$

$$d\ln\left(\frac{w_1}{w_2}\right) = \gamma \frac{\ell}{1-\ell} d\ln(\ell_1) - \gamma \frac{\ell}{1-\ell} d\ln(\ell_2)$$
$$= \gamma \frac{\ell}{1-\ell} \left[d\ln(\ell_1) - d\ln(\ell_2) \right]$$
$$= \gamma \frac{\ell}{1-\ell} d\ln\left(\frac{\ell_1}{\ell_2}\right).$$



$$\begin{split} IES_L &= \left. \frac{d \ln \left(\ell_1 / \ell_2 \right)}{d \ln \left(w_1 / w_2 \right)} \right|_{MU_C} \\ &= \left. \frac{1}{\gamma} \left(\frac{1 - \ell}{\ell} \right). \end{split}$$

Tip: if \(\gamma\) = 0 such that utility is linear in leisure, then IES_L is infinite

Non-Separable Preferences (Low, 2005)

Household solves

$$\max_{\{c_t, k_{t+1}, \ell_t\}_{t=0}^{\infty}} E_0 \left(\sum_{t=0}^{\infty} (\beta N)^t \, u \, (A_t c_t, 1 - \ell_t) \right),$$

s.t. $c_t + ANk_{t+1} = R_t k_t + w_t \ell_t,$
 $\ell_t \in [0, 1],$

and the other usual constraints

The first-order conditions are

$$u_{Ac} (A_t c_t, 1 - \ell_t) A_t = \lambda_t,$$

$$u_{1-\ell} (A_t c_t, 1 - \ell_t) = \lambda_t w_t,$$

$$\lambda_t = \beta A^{-1} E_t (R_{t+1} \lambda_{t+1}).$$

where λ_t is the multiplier on the budget constraint

Benchmark utility specification is isoelastic Cobb-Douglas

$$u(A_t c_t, 1 - \ell_t) = \frac{1}{1 - \gamma} \left((A_t c_t)^{\chi} (1 - \ell_t)^{1 - \chi} \right)^{1 - \gamma}$$

The derivatives of this function are

$$u_{Ac} = \chi(1-\gamma) \frac{1}{A_t c_t} u(A_t c_t, 1-\ell_t),$$

$$u_{1-\ell} = (1-\chi)(1-\gamma) \frac{1}{1-\ell_t} u(A_t c_t, 1-\ell_t),$$

$$u_{1-\ell,Ac} = \frac{\chi(1-\chi)(1-\gamma)^2}{(1-\ell_t)A_t c_t} u(A_t c_t, 1-\ell_t).$$

- Key issue: Is consumption at time-t a substitute or a complement for leisure at time-t?
 - This depends on the sign of the cross-partial derivative $u_{Ac,1-\ell}(\cdot)$: $u_{Ac,1-\ell} > 0$ implies complements
 - For the benchmark specification

$$egin{aligned} & u_{1-\ell, Ac} = \chi(1-\chi)(1-\gamma) \ & imes (A_t c_t)^{\chi(1-\gamma)-1} (1-\ell_t)^{(1-\chi)(1-\gamma)-1}. \end{aligned}$$

- This term will be negative if $\gamma > 1$
- Baseline assumption: γ = 2.2, implying consumption and leisure are substitutes

Combining first-order conditions yields

$$u_{1-\ell}\left(A_tc_t, 1-\ell_t\right) = u_{Ac}\left(A_tc_t, 1-\ell_t\right)A_tw_t.$$

With the baseline preferences, this becomes

$$\begin{split} \frac{1-\chi}{1-\ell_t} &= \chi \frac{w_t}{c_t},\\ &\Rightarrow \ell_t = 1 - \left(\frac{1-\chi}{\chi}\right) \frac{c_t}{w_t}. \end{split}$$

- This specification produces constant hours along a balanced growth path
- King et al (1989) provide a general set of conditions

Data Puzzle 1

- Consumption tracks income over the life-cycle: Inconsistent with consumption smoothing
- If consumption and leisure are substitutes, people working more hours will consume more implying that consumption tracks income (Heckman, 1974)

Data Puzzle 2

- There is a discrete drop in consumption immediately after retirement which is inconsistent with consumption smoothing
- If consumption and leisure are substitutes, then consumption will drop at retirement (French 2005, Aguiar and Hurst 2005)

Data Puzzle 3

- Low-wage young people work many hours; high-wage old people work fewer hours: Inconsistent with the intertemporal substitution of labor
- Young people work long hours to fund precautionary saving
- This precautionary saving builds up assets and reduces the need to work when old
- This result does not require non-separable preferences
- It does require life-cycle (not infinite-horizon) framework with low initial wealth

Conclusion

- Nice weather!!!!! Woooooo!
- Midterm in one week!
- Homework in one week!