Macro II

Professor Griffy

UAlbany

Spring 2024

Introduction

- Midterm in a week!
- Homework next Tuesday.
- Today: Real Business Cycle Model

Basic RBC Model

- Household solves

$$
\begin{aligned}
\max _{\left\{C_{t}, I_{t}, L_{t}, K_{t+1}\right\}_{t=0}^{\infty}} & \sum_{t=0}^{\infty} \beta^{t} N_{t}\left[\ln \left(\frac{C_{t}}{N_{t}}\right)+\chi \frac{\left(1-L_{t} / N_{t}\right)^{1-\gamma}-1}{1-\gamma}\right] \\
\text { s.t. } & C_{t}+I_{t}=r_{t} K_{t}+W_{t} L_{t}, \\
& K_{t+1}=(1-\delta) K_{t}+I_{t}, \\
& L_{t} \in\left[0, N_{t}\right] \\
& K_{0} \text { given, } \quad C_{t} \geq 0 .
\end{aligned}
$$

- Parameter restrictions: $\quad \chi>0, \gamma \geq 0,0<\beta<1$
- $1-L_{t} / N_{t}$ is per capita leisure
- Note that $K_{t}<0$ represents borrowing

Basic RBC Model II

- Assume constant growth in population and productivity

$$
\begin{aligned}
& N_{t}=N_{0} N^{t}, \quad N_{0}, N>0, \quad \beta N<1 \\
& A_{t}=A_{0} A^{t}, \quad A_{0}, A>0
\end{aligned}
$$

- The per-effective-worker problem becomes:

$$
\begin{aligned}
\max _{\left\{c_{t}, k_{t+1}, \ell_{t}\right\}_{t=0}^{\infty}} & \sum_{t=0}^{\infty}(\beta N)^{t}\left[\ln \left(A_{t} c_{t}\right)+\chi \frac{\left(1-\ell_{t}\right)^{1-\gamma}-1}{1-\gamma}\right], \\
\text { s.t. } & c_{t}+A N k_{t+1}=R_{t} k_{t}+w_{t} \ell_{t} \\
& \ell_{t} \in[0,1] ; \quad k_{0} \text { given, } \quad c_{t} \geq 0 \\
& \lim _{J \rightarrow \infty}\left(\prod_{j=1}^{J-1} R_{t+j}^{-1}\right) A_{t+J} N_{t+J} k_{t+J}=0 .
\end{aligned}
$$

Solution

- The first order conditions are

$$
\begin{align*}
\frac{1}{c_{t}} & =\beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}, \tag{EE}\\
u^{\prime}\left(A_{t} c_{t}\right) A_{t} w_{t} & =v^{\prime}\left(1-\ell_{t}\right) \\
\Leftrightarrow \frac{1}{c_{t}} w_{t} & =\chi\left(1-\ell_{t}\right)^{-\gamma} . \tag{LL}
\end{align*}
$$

- Euler equation and "portfolio allocation"

Effect of interest rate changes on savings

$$
\frac{1}{c_{t}}=\beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}
$$

- Substitution effect: Increasing R_{t+1} lowers the price of future consumption, inducing substitution into the cheaper good (future consumption), inducing more saving
- Income effect
- Positive assets: Increasing R_{t+1} raises future income and consumption, lowers future $M U_{C}$, inducing less savings
- Negative assets: Increasing R_{t+1} reduces future income and consumption, raises future $M U_{C}$, inducing more savings

Effect of interest rate changes on savings

$$
\frac{1}{c_{t}}=\beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}
$$

- General (empirical) consensus
- Consumers are net savers: the aggregate income effect of higher interest rates is to lower saving
- The substitution effect weakly dominates implying that savings increases in interest rates

Labor-leisure tradeoff

$$
\frac{1}{c_{t}} w_{t}=\chi\left(1-\ell_{t}\right)^{-\gamma}
$$

$-M U_{C} \times$ wage $=M U_{L}$

- Wealth effects: Holding w_{t} constant, higher permanent income raises current consumption, lowers marginal benefit of working
- Higher assets
- Higher current or future non-labor income
- Higher current or future labor income
- Increasing non-labor component of permanent income lowers labor supply

Effects of increasing the current wage

 $\left(M U_{C} \times\right.$ wage $\left.=M U_{L}\right)$$$
\frac{1}{c_{t}} w_{t}=\chi\left(1-\ell_{t}\right)^{-\gamma}
$$

- Substitution effect: holding $M U_{C}$ constant, and raising w_{t} increases marginal benefit of working
- Income effect: raising w_{t} increases y_{t}^{P}, lowers $M U_{C}$ and marginal benefit of working

General (empirical) consensus

$$
\frac{1}{c_{t}} w_{t}=\chi\left(1-\ell_{t}\right)^{-\gamma}
$$

- Temporary wage increases generate more hours due to small income effect
- Permanent wage increases generate no more hours because income and substitution effects offset. Consistent with long-term data where wage rises but labor hours do not
- Our specification delivers this

Labor supply curve

- Rearrange (LL) to get

$$
\ell_{t}=1-\left(c_{t} \chi\right)^{1 / \gamma} w_{t}^{-1 / \gamma}
$$

- Frisch supply curve

$$
\ell_{t}=f\left(w_{t}, M U_{C}\right)=f\left(w_{t}, y_{t}^{P}\right)
$$

- Consider effects of changing wages with $M U_{C}$ held constant
- Wealth effects ignored
- Note: $M U_{C}$ can depend on things besides y_{t}^{P}, although it does not here

Intertemporal elasticity of substitution of labor $\left(I E S_{L}\right.$ or Frisch elasticity)

- Measures willingness to vary labor over time, holding $M U_{C}$ (wealth) constant

$$
I E S_{L}=\left.\frac{d \ln \left(\ell_{1} / \ell_{2}\right)}{d \ln \left(w_{1} / w_{2}\right)}\right|_{M U_{C}}
$$

Derivation

$$
\begin{align*}
\frac{1}{c_{t}} & =\beta A^{-1} \frac{1}{c_{t+1}} R_{t+1}, \tag{EE}\\
\frac{1}{c_{t}} w_{t} & =\chi\left(1-\ell_{t}\right)^{-\gamma} . \tag{LL}
\end{align*}
$$

- Combine (EE) and (LL)

$$
\chi \frac{\left(1-\ell_{1}\right)^{-\gamma}}{w_{1}}=\beta A^{-1} \chi \frac{\left(1-\ell_{2}\right)^{-\gamma}}{w_{2}} R_{2} .
$$

Portfolio Allocation

- Note that the household smooths leisure as well as consumption
- For example, interest rates affect labor supply
- Rearrange the previous equation

$$
\begin{aligned}
\beta A^{-1} R_{2}\left(\frac{w_{1}}{w_{2}}\right)= & \frac{\left(1-\ell_{1}\right)^{-\gamma}}{\left(1-\ell_{2}\right)^{-\gamma}} \\
\ln \left(\beta A^{-1} R_{2}\right)+\ln \left(\frac{w_{1}}{w_{2}}\right)= & -\gamma \ln \left(1-\ell_{1}\right)+\gamma \ln \left(1-\ell_{2}\right) \\
= & -\gamma\left[\ln \left(1-\exp \left(\ln \ell_{1}\right)\right)\right. \\
& \left.-\ln \left(1-\exp \left(\ln \ell_{2}\right)\right)\right] .
\end{aligned}
$$

- Implicitly differentiate:

$$
\begin{aligned}
d \ln \left(\frac{w_{1}}{w_{2}}\right)= & \gamma \frac{\exp \left(\ln \left(\ell_{1}\right)\right)}{1-\exp \left(\ln \left(\ell_{1}\right)\right)} d \ln \left(\ell_{1}\right) \\
& -\gamma \frac{\exp \left(\ln \left(\ell_{2}\right)\right)}{1-\exp \left(\ln \left(\ell_{2}\right)\right)} d \ln \left(\ell_{2}\right) .
\end{aligned}
$$

- Now assume that $\ell_{1}=\ell_{2}=\ell$

$$
\begin{aligned}
d \ln \left(\frac{w_{1}}{w_{2}}\right) & =\gamma \frac{\ell}{1-\ell} d \ln \left(\ell_{1}\right)-\gamma \frac{\ell}{1-\ell} d \ln \left(\ell_{2}\right) \\
& =\gamma \frac{\ell}{1-\ell}\left[d \ln \left(\ell_{1}\right)-d \ln \left(\ell_{2}\right)\right] \\
& =\gamma \frac{\ell}{1-\ell} d \ln \left(\frac{\ell_{1}}{\ell_{2}}\right)
\end{aligned}
$$

- Finally, we get

$$
\begin{aligned}
I E S_{L} & =\left.\frac{d \ln \left(\ell_{1} / \ell_{2}\right)}{d \ln \left(w_{1} / w_{2}\right)}\right|_{M U_{C}} \\
& =\frac{1}{\gamma}\left(\frac{1-\ell}{\ell}\right)
\end{aligned}
$$

- Tip: if $\gamma=0$ such that utility is linear in leisure, then $I E S_{L}$ is infinite

Non-Separable Preferences (Low, 2005)

- Household solves

$$
\begin{aligned}
\max _{\left\{c_{t}, k_{t+1}, \ell_{t}\right\}_{t=0}^{\infty}} & E_{0}\left(\sum_{t=0}^{\infty}(\beta N)^{t} u\left(A_{t} c_{t}, 1-\ell_{t}\right)\right) \\
\text { s.t. } & c_{t}+A N k_{t+1}=R_{t} k_{t}+w_{t} \ell_{t} \\
& \ell_{t} \in[0,1]
\end{aligned}
$$

- and the other usual constraints
- The first-order conditions are

$$
\begin{aligned}
u_{A c}\left(A_{t} c_{t}, 1-\ell_{t}\right) A_{t} & =\lambda_{t} \\
u_{1-\ell}\left(A_{t} c_{t}, 1-\ell_{t}\right) & =\lambda_{t} w_{t} \\
\lambda_{t} & =\beta A^{-1} E_{t}\left(R_{t+1} \lambda_{t+1}\right)
\end{aligned}
$$

where λ_{t} is the multiplier on the budget constraint

- Benchmark utility specification is isoelastic Cobb-Douglas

$$
u\left(A_{t} c_{t}, 1-\ell_{t}\right)=\frac{1}{1-\gamma}\left(\left(A_{t} c_{t}\right)^{\chi}\left(1-\ell_{t}\right)^{1-\chi}\right)^{1-\gamma}
$$

- The derivatives of this function are

$$
\begin{aligned}
u_{A c} & =\chi(1-\gamma) \frac{1}{A_{t} c_{t}} u\left(A_{t} c_{t}, 1-\ell_{t}\right), \\
u_{1-\ell} & =(1-\chi)(1-\gamma) \frac{1}{1-\ell_{t}} u\left(A_{t} c_{t}, 1-\ell_{t}\right), \\
u_{1-\ell, A c} & =\frac{\chi(1-\chi)(1-\gamma)^{2}}{\left(1-\ell_{t}\right) A_{t} c_{t}} u\left(A_{t} c_{t}, 1-\ell_{t}\right) .
\end{aligned}
$$

- Key issue: Is consumption at time- t a substitute or a complement for leisure at time- t ?
- This depends on the sign of the cross-partial derivative $u_{A c, 1-\ell}(\cdot): u_{A_{c, 1-\ell}}>0$ implies complements
- For the benchmark specification

$$
\begin{aligned}
u_{1-\ell, A c}= & \chi(1-\chi)(1-\gamma) \\
& \times\left(A_{t} c_{t}\right)^{\chi(1-\gamma)-1}\left(1-\ell_{t}\right)^{(1-\chi)(1-\gamma)-1} .
\end{aligned}
$$

- This term will be negative if $\gamma>1$
- Baseline assumption: $\gamma=2.2$, implying consumption and leisure are substitutes
- Combining first-order conditions yields

$$
u_{1-\ell}\left(A_{t} c_{t}, 1-\ell_{t}\right)=u_{A c}\left(A_{t} c_{t}, 1-\ell_{t}\right) A_{t} w_{t}
$$

- With the baseline preferences, this becomes

$$
\begin{aligned}
\frac{1-\chi}{1-\ell_{t}} & =\chi \frac{w_{t}}{c_{t}} \\
\Rightarrow \ell_{t} & =1-\left(\frac{1-\chi}{\chi}\right) \frac{c_{t}}{w_{t}}
\end{aligned}
$$

- This specification produces constant hours along a balanced growth path
- King et al (1989) provide a general set of conditions

Data Puzzle 1

- Consumption tracks income over the life-cycle: Inconsistent with consumption smoothing
- If consumption and leisure are substitutes, people working more hours will consume more implying that consumption tracks income (Heckman, 1974)

Data Puzzle 2

- There is a discrete drop in consumption immediately after retirement which is inconsistent with consumption smoothing
- If consumption and leisure are substitutes, then consumption will drop at retirement (French 2005, Aguiar and Hurst 2005)

Data Puzzle 3

- Low-wage young people work many hours; high-wage old people work fewer hours: Inconsistent with the intertemporal substitution of labor
- Young people work long hours to fund precautionary saving
- This precautionary saving builds up assets and reduces the need to work when old
- This result does not require non-separable preferences
- It does require life-cycle (not infinite-horizon) framework with low initial wealth

Conclusion

- Nice weather!!!!! Woooooo!
- Midterm in one week!
- Homework in one week!

