
Macro II

Professor Griffy

UAlbany

Spring 2023



Introduction

I Today: Solution techniques I
I Some solution techniques:

I Value function iteration (you’ve basically done this);
I guess and verify (method of undetermined coefficients).

I Test next Thursday.
I Homework 3 will be due next Thursday (will be helpful)



Solution Methods: Introduction

I Today we will explore solutions to the Neoclassical Growth
model.

I The first two directly solve the problem at hand:
1. guess and verify: guess the functional form for the value/policy

function
2. (by hand) value function iteration: iterate on value function

until you see a pattern.

I First: recall definition of recursive competitive equilibrium.



Recursive Competitive Equilibrium
Definition. Let K denote the state of the aggregate economy and
a denote the personal state of an agent. Then a Recursive
Competitive Equilibrium (RCE) is a set of functions that describe

Quantities: K ′ = G(K), a′ = g(a,K) (agg. and ind. policy fns)
Lifetime Utility: V (a,K) (the value function)
Prices: r(K) = fK (K ,N) + 1 − δ, w(K) = fN(K ,N) (competitive
prices)

such that:

1. Prices are complete and given

2. V (a,K) and g(a,K) solve the consumer’s problem

3. Consistency: G(K) = g(K ,K)

That is, households must know prices so they can make utility
maximizing decisions and if we gave on person all of the capital,
their choice would coincide with the aggregation of choices.



Guess and Verify

I This method is also known as the Method of Undetermined
Coefficients

I It involves guessing the form of the value/policy function, and
then verifying that the guess is consistent with the
optimization problem

I The idea is that, if the guess is correct, then when “operated
on” it should recover that same form and we can back-out the
coefficients previously left undetermined
I Recall our solution is a fixed point: Tv∗ = v∗

I This solution technique has several requirements:
I Unique Solution
I “Correct Guess”



Guess and Verify: Policy Function

Neoclassical growth model. Households solve the following:

U = max
{ct}∞t=0

∞∑
t=0

βt ln(ct) s.t. ct + kt+1 = kα
t

The recursive problem is given by the following

V (k) = max
k′

{ln(kα − k ′) + βV (k ′)}

Steps:
1. Guess that k ′ = ηkα.
2. Solve for the undetermined coefficient, η, and
3. find the policy function for capital and consumption



Policy G & V
First take the F.O.C. of the optimization problem.

1
kα − k ′ = β

dV (k ′)

dk ′

Note that there is a k ′ on the LHS.
Optimal policy fn must satisfy the F.O.C → we plug in our guess.

1
kα − (ηkα)

= β
dV (k ′)

dk ′ =⇒ 1
(1 − η)kα

= β
dV (k ′)

dk ′

Envelope theorem for dV (k ′)/dk ′:

dV (k)
dk =

1
kα − k ′ (αkα−1) =

1
(1 − η)kα

(αkα−1)︸ ︷︷ ︸
plug in the guess

=
α

(1 − η)k



Policy G & V II
“Pushing forward,” we have

dV (k ′)

dk ′ =
α

(1 − η)k ′ =
α

(1 − η)ηkα︸ ︷︷ ︸
plug in the guess

.

Plug into the F.O.C. → can now solve for undetermined coeff. η.

1
(1 − η)kα

=
αβ

(1 − η)ηkα
=⇒ η = αβ,

which we can verify is a constant. Policy fns:

k ′ = αβkα and c = (1 − αβ)kα.



Guess and Verify: Value Function

Now let’s try our hand at guessing the value function for the same
problem:

V (k) = max
k′

{
ln(kα − k ′) + βV (k ′)

}
.

1. Guess that V (k) = A + Bln(k), where A and B are the
undetermined coefficients.

2. Note: guess should always mirror utility function + constant.



G & V II
First solve the RHS maximization problem, with guess for V (k ′).

dRHS
dk ′ =

d
dk ′

{
ln(kα − k ′) + β

[
A + Bln(k ′)

]}
= 0

=⇒ k ′ =
βBkα

1 + βB

Now, to evaluate the RHS at the optimum we plug in k ′.

RHS
(
k ′∗) = ln

(
kα − βBkα

1 + βB

)
+ β

[
A + Bln

(
βBkα

1 + βB

)]

= ln
(

kα

1 + βB

)
+ βA + βBln

(
βBkα

1 + βB

)



Verifying
Now, group the constants together and the k terms separately.

RHS
(
k ′∗) = −ln(1 + βB) + βA + βBln

(
βB

1 + βB

)
︸ ︷︷ ︸

constant

+ α(1 + βB)︸ ︷︷ ︸
ln(k)-term coeff.

ln(k)

The V on the LHS should also have the form of our guess:

A = constant = −ln(1 + βB) + βA + βBln
(

βB
1 + βB

)

B = ln(k)-term coeff. = α(1 + βB)

Because it can be written as V (k) = A + Bln(k), guess is verified.



G & V III

Now solve for B using the second equation, and then A from the
first.

B =
α

1 − αβ
and A =

1
1 − β

[
ln(1 − αβ) +

αβ

1 − αβ
ln(αβ)

]

We might also want to get the policy function. Recall that we
actually solved for it earlier. All we need to do is plug in for B.

k ′ =
βBkα

1 + βB =⇒ k ′ = αβkα



Value Function Iteration

I This method relies on the ideas of a contraction / fixed point

I Recall: (paraphrasing) ”starting from any possible V0 in the
space of potential solutions, when iterating on V0 we will get
closer and closer to the true V ”

I We are going to make an initial guess at V (generally
V0 = 0), and then iterate.

I Look for a pattern.



Value Function Iteration
I The above is true if we are assuming an infinite horizon; what

if there is some terminal period T (for example, a lifecycle
model)?

I Then you can think of this process like you would backwards
induction…
I V0 is the value at T + 1 (= 0)

I V1 is the value you get in T when optimizing knowing that
V0 = 0

I etc.

I You would continue this process until you found the value
function for the first date through the last date:
VT , . . . ,V1,V0, and your answer would effectively be the
sequence of value (or policy) functions



First Iteration

Let’s try our hand at an easy example; consider the problem we’ve
been working with and initialize the iterations with V0(k ′) = 0

V1(k) = max
k′

{
ln(kα − k ′) + β 0︸︷︷︸

V0(k′)

}
Optimization requires that k ′ = g1(k) = 0 (calculus doesn’t work
here, we are at a “corner”). Knowing this, we can plug in this
optimal policy to find V1(k).

V1(k) = ln(kα − 0) = αln(k)

Now for a second round …



Second Iteration

V2(k) = max
k′

{
ln(kα − k ′) + β αln(k ′)︸ ︷︷ ︸

V1(k′)

}
Let’s optimize.

dV2(k)
dk ′ = 0 =⇒ k ′ = g2(k) =

αβ

1 + αβ
kα

Knowing this, we can plug in this optimal policy to find V2(k).

V2(k) = ln
(

kα

1 + αβ

)
+ αβln

(
αβ

1 + αβ
kα

)

= ln
(

1
1 + αβ

)
+ αβln

(
αβ

1 + αβ

)
+ α(1 + αβ)ln(k)

Let’s go for a third, round, paying attention to an emerging pattern.



Third Iteration

V3(k) = max
k′

{
ln(kα − k ′)

+ β
[
ln
(

1
1 + αβ

)
+ αβln

(
αβ

1 + αβ

)
+ α(1 + αβ)ln(k ′)

]
︸ ︷︷ ︸

V2(k′)

}

Optimize.

dV3(k)
dk ′ = 0 =⇒ k ′ = g3(k) =

αβ + (αβ)2

1 + αβ + (αβ)2 kα

Plug the optimal policy back in to find V3(k).

V3(k) = βln
(

1
1 + αβ

)
+ αβ2ln

(
αβ

1 + αβ

)
+ (αβ + (αβ)2)ln

(
αβ + (αβ)2

1 + αβ + (αβ)2

)

+α(1 + αβ + (αβ)2)ln(k)



Pattern
We could continue (or make our computer do it), but for this
problem we can see a pattern emerge. We can see that as we let
the iteration s → ∞, we’ll have

g∗(k) = lim
s→∞

gs(k) = αβkα.

See guess earlier for how to “derive” the above. The Value
function itself can be shown to converge to

V ∗(k) = lim
s→∞

Vs(k) =
1

1 − β

[
ln(1 − αβ) +

αβ

1 − αβ
ln(αβ)

]
+

α

1 − αβ
ln(k),

which is what we found earlier with Guess and Verify.



Functional Euler Equation

I This last “method” doesn’t actually solve for the value /
policy functions directly (though you can back them out)

I Sometimes you might see this called the Euler-Lagrange
Equation

I It involves the construction of a “Lagrangian” using the
Bellman Operator; here, though, we are mapping functions to
functions (hence “functional equation”)

I The procedure should feel very familiar to you, as you’ve sort
of seen it in previous sections; set up the “Lagrangian” and
take F.O.C.s, find the EE and use constraints / conditions
(e.g. market clearing) to solve for whatever you desire



Functional Euler Equation
Just to get an idea, let’s try it out on our running example:

L = ln(c) + βV (k ′) + λ
[
kα − c − k ′]

∂L
∂c = 0 : λ =

1
c (1)

∂L
∂k ′ = 0 : λ = β

dV (k ′)

dk ′ (2)

∂L
∂λ

= 0 : c + k ′ = kα (3)

Combine (1) and (2).

1
c = β

dV (k ′)

dk ′ (4)



Functional Euler Equation
Now let’s use the envelope theorem. Evaluating L at the same
value as V on the RHS, the two are equal. Further we know that
V ≤ L. Thus

∂L
∂k =

dV (k)
dk =⇒ dV (k)

dk = λ[αkα−1]

Pusing this forward, and plugging in for λ′ = 1/c ′…

dV (k ′)

dk ′ =
1
c ′ [αk ′α−1], (5)

noting that αkα−1 = 1 + r when δ = 1 (which is what we have in
this example).

→ 1
c = β[αk ′α−1]

1
c ′ (EE)



Functional Euler Equation

I From here we can do many things…

I You might want to find steady state values: plug in to budget
constraints / market clearing conditions, do comparative
statics, etc.

I Alternatively, you may want to recover the policy function:
one way would be to iterate on the EE like we did in section 2
(you would find k ′ = αβkα)

I This technique may seem more roundabout than last time
(recall I just plugged the constraint right into the objective),
but just note that this method is slightly more general insofar
as it handles situations where you can’t easily substitute in all
constraints



Conclusion

I Next time: Lecture 13 (RBC Model).
I Midterm next Thursday.
I Homework 3/4 will also be due that day (will be helpful)


	Introduction
	Solution Methods
	Guess and Verify
	Value function iteration
	Functional EE

