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Announcements

» Today: Start discussing solution techniques.

» Focus on linearization & its problems.

> Midterm on Thursday! Will not cover today's lecture.
» HW4 due tonight.



Motivation
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Models are hard to solve globally.

Requires a lot of grid points, entails curse of dimensionality,
takes a long time.

A linearized system, by contrast, is easy to solve.
Need to pick a place to linearize around.
Pick the steady state.

Underlying assumption: economy will stay close to the
steady-state.



Empirical Motivation

» Standard RBC: all fluctuations of hours worked on the
intensive margin, i.e. average number of hours worked.

» Data: little fluctuation in average hours worked; lots of
fluctuation in whether or not people are working (extensive
margin).

» Standard RBC: missed badly on labor fluctuations (Frisch
Elasticity, i.e. response of labor to change in wage too low).

» Solution: Modify model to have extensive margin with high
Frisch Elasticity.

> Now: households pick the probability of working, but have to
work a set number of hours.

» This is a nonconvexity in that it forces individuals to work
either 0 or h hours.



Hansen (1985)

» Neoclassical growth model with labor-leisure lottery.

» A social planner maximize the following:

E(Y B lin(Ce) — vHe]) (1)
t=0

» Subject to the following constraints:
Ye = AcK{ (n* He)t " (2)

In(A¢) = (1 — p)In(A) + pIn(Ac—1) + ¢, € ~ N(0,02) (3)
> The goods market clears and capital evolves in a
predetermined fashion.

> Here, we assume that per capita labor productivity grows at
rate 7.



Equilibrium

» First step: detrend appropriate variables by per capita growth
to get stationarity: i.e. y; = Yi/n'.
» The system of equations that characterize the equilibrium are:

Yo = ack{h;? (4)
In(a¢) = (1 — p)In(A) + pin(az_1) + (5)
Ye=Ct+ it (6)
nkerr = (1 — )ke + it (7)

» Combine FOC|[c] and FOCIh]:
yeehe = (1 — 0)yr (8)

» Euler Equation:

n_ 1 Ye+1 _
&= BB +1-0) ©)




Solving for the Steady-State

In(a*) = (1 — p)In(A) + pIn(a*)
= In(a*) = In(A) (10)
Euler Equation:

1= BRI 0 +1-0)]

n_ v

» 5 =0 +1-9

P S (11)
T 116"



Solving for the Steady-State
» Use the previous to solve for investment
nk* =(1—-0)k* +i*

=Mn-1+9)k"=i"

O(n—1+ 5)))/*

=i =(—
A—140

» FOC|c] and FOC[h]:
yc*h* = (1—0)y*

O(n—1+9)

*h*: _ *

=1 —(

(12)



Solving for the Steady-State

» Finally, solve for output.
y* — a*k*éh*l—ﬁ

0 0(n —1+0)

v = (G I i (Y

W10 o« 0 1-10 On—14+0)\_11—
ytl=a (%_1+5)6[( ~ )[1—(m)] e
=P G
(14)

» All variables now a function of parameters.



Steady-States
» In steady-state y; = yrr1 = y*.

In(a*) = In(A) (15)
K=y (16)
,*:(e(gn_—ll:g)) . (17)

== (P (18)
e e L
V= O - Y
(20)

» These steady-states will be used for calibration/solving.



Overview

» Broadly, two methods of solving models:
1. Local linear methods.
2. Global non-linear methods.
» Tradeoff: accuracy (global non-linear) for speed and simplicity
(local linear).

» My preference: global methods (linear methods involve
linearizing Euler Equation, distorting choices over risk).

» Here: Discuss log linearization and Blanchard and Kahn's
Method.



Local Linear Methods

» Log-linearize the system around the steady-state, then
proceed.
» First have to solve the system for stability:

1. Klein's Method (2000): Used for singular matrices.
2. Sim's Method (2001): Used when it is unclear which variables

are states and controls.
3. Blanchard and Kahn's Method (1980): First solution method
for rational expectations models.

» Here, we will use Blanchard and Kahn's Method.



Log-Linearizing the System

We first wish to rewrite X = In(x;) — In(x) in two convenient ways:

)

Then, the first-order Taylor Approximation to this equation yields:

)?t = In(%

C o OX
X = X (x) + a—j:(x)(xt - Xx)

1
= X = In(1) + ;(xt - Xx)

We can also rewrite the equation for X; as

xp = xe*t (21)



Log-Linearizing the System

From equilibrium conditions:

Ye = ack{h; ™’ (22)
= In(y:) = In(a¢) + OIn(ke) + (1 — 0)In(hy)
In(y) = In(a) + 0In(k) + (1 — 0)In(h)

= ¥t = In(y:) — In(y) = In(a:) + 0OIn(k:) + (1 — 0)In(h;)
— (In(a) + @In(k) + (1 — 6)In(h))



Log-Linearizing the System

In(as) = (1 — p)In(A) + pIn(as—1) + €;
In(a) = (1 — p)In(A) + pln(a)

= 51_— = Pét—l + €t (24)



Log-Linearizing the System

Ye=Ct+ it
- 1 Xt
:>th /n(l)-'—;(Xt—X) = (;—‘—1)

= y(Fe+1)=c(&+1)+i(it +1)



Log-Linearizing the System

» Let ¥ = In(y:) — In(y*). Then, using Taylor Series
approximations, the system characterizing the equilibrium

becomes: . B
Vi = 3¢ + Oke + (1 — ) hy (25)
at = par-1+ € (26)
(%—1+6))7t = [%—1+5—e(n—1+5)]z~t+9(n—1+5)7t (27)
Whers = (1— ke + (1 — 1+ o) (28)
Jr==2+he (29)

0= %Et + E[(% — 1+ 0)(Frs1 — keg1) — %Eﬂrl] (30)



Log-Linearizing the System

> We can now write the system as:
VG = Vol + V33; (ME)

WaEr(Ee1) = Vsér + V(e + V73; (TE)
» (; are static predetermined and nonpredetermined variables,
[ 7, Be]'.
P £, are dynamic predetermined and nonpredetermined variables,
[ke, &'
> 3, is the technology process.

v

Why is ¢; among the dynamic variables?



Matrices
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Solving the Model - Blanchard and Kahn (1980)

A
c

g(c)=0

]

» Select & st the system isn't explosive (optimal control!).



Solving the Model - Cont.

» Solve systems (TE and ME) so that &;1 is only a function on
é.t and ét:
V(e = Vol + V33 (31)

V4Er(§e41) = Vs + Vele + V73; (32)
= G = VW€, + V33

» Plug into transition equation:
WaEe(Ee1) = Vsl + VoW [Woly + W33, + W73,

= Er(€e1) = W Vs + VW W5l + W, W7+ WU T35,
(33)

» Desired result!



Solving the Model - Cont.

» Having solved systems on previous slide so that &4 is only a
function on &; and 3;:

ket ] 1 {/ﬂ -
- =N"JIN ||+ E 34
|:Et(ct+1) Ct o (34)

» A~1JA is the Jordan Decomposition.
» Subsume A into the model variables, denoted by hats:

& = Mok + Aol (35)



Solving the Model - Cont.

» Subsume A into the model variables, denoted by hats.

A = ~ | +Da 36
|:Et(Ct+]_) 0 J2 Ct t ( )
Et(?:t+1) = JQEt + Dzét (37)

» J, > 1 — bad choice of ¢; and this explodes.
» Solution: pick ¢; so that it isn't a function of ¢;_1!

» Rearranging:

& = Iy Er (&) — Jy D03y (38)



Solving the Model - Cont.

> lterating on previous equation:
Cer1 = S5 "E(8er2) — S5 T D2Be i (39)
= & = Sy E(Uy P Ee(Cera) — Jy T Dodey1) — Jy tDo3y
= & = Jy 2Ee(Ce42)) — J5 2Dop3r — Jy ' Do3, (40)

» Impose transversality condition (i.e. E¢(¢t+i)) = O for large
enough i):

==Y 4y Dypa, (41)
i=0



Solving the Model - Cont.

> lterating on (33):

& = Aok 4+ Mooy

= /\22 Et —/\12kt Z _/ szat

> Solving this yields:

— T D =
= ¢ = —Nyy Mok + (1//\22)(p 72J2)9t (42)

» The system will now be saddle-path stable.



Next Time

» Midterm!
» Start value function iteration next week.

» New homework next week.
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