Macro II

Professor Griffy

UAlbany

Spring 2024

Announcements

- Today:

1. Random vs. directed search
2. Change primitive: workers can observe wage offers prior to match.
3. i.e., Moen (1997)

- Homework due next Thursday.
- Three more classes.

Random vs. Directed Search

- How do workers find jobs?
- How much information do they have about a job before applying?
- Two extremes:

1. Random Search: no information about a job prior to receiving offer.
2. Directed Search: all information about a job prior to application.

- Why does this matter?

1. Random search is generically inefficient: one worker may reject a job offer than another would accept.
2. Directed search is generically efficient: by applying for a job, a worker signals that the job is already acceptable.

- As we will see next time, it also changes computational complexity.

Random vs. Directed Search II

- Empirically, how can we tell them apart?
- Hazard rate to wage w generically:

$$
\begin{equation*}
H_{U}(w)=\underbrace{\lambda(w)}_{\text {Arrival Rate }} \times \underbrace{f(w)}_{\text {Prob.Offer }}=W \tag{1}
\end{equation*}
$$

- Random search:

$$
\begin{equation*}
H_{U}(w)=\underbrace{\lambda}_{\text {Arrival Rate }} \underbrace{\left[1-F\left(w_{R}\right)\right]}_{\text {Selectivity }} \underbrace{f(w)}_{\text {P.(Offer }=W)} \tag{2}
\end{equation*}
$$

- Directed search:

$$
\begin{align*}
H_{U}(w)= & \underbrace{\lambda(w)}_{\text {Arrival }} \underbrace{\left.1-F\left(w_{R}\right)\right]}_{F\left(w_{R}\right)=0} \underbrace{f(w)}_{P(\text { Offer }=w)} \tag{3}\\
= & \underbrace{\lambda(W)}_{\text {Arrival }} \underbrace{f(w)}_{P\left(w=w_{j}\right)=1} \tag{4}\\
= & \underbrace{\lambda(w)}_{\text {Arrival Rate of Wage } w} \tag{5}
\end{align*}
$$

Some Evidence

- (First couple Borrowed from Shouyong Shi)
- Hall and Krueger (08):

1. 84% had information on wage prior to first interview.

- Holzer, Katz, and Krueger (91)

1. Firms in high-wage industries receive more applications than low-wage industries, controlling for observables.

- Braun, Engelhardt, Griffy, and Rupert: unemployment insurance changes $\lambda(w) \rightarrow$ inconsistent with random search.

Mortensen and Pissarides Model

- Unemployed flow value:

$$
\begin{equation*}
r U=b+p(\theta) E[W(w)-U] \tag{6}
\end{equation*}
$$

- Employed flow value:

$$
\begin{equation*}
r W(w)=w+\delta[U-W(w)] \tag{7}
\end{equation*}
$$

- Vacant flow value:

$$
\begin{equation*}
r V=-\kappa+q(\theta) E[J(w)-V] \tag{8}
\end{equation*}
$$

- Matched flow value:

$$
\begin{equation*}
r J(w)=(p-w)+\delta[V-J(w)] \tag{9}
\end{equation*}
$$

- Free entry equilibrium condition:

$$
\begin{align*}
V & =0 \tag{10}\\
\rightarrow \frac{\kappa}{E[J(w)]} & =q(\theta) \tag{11}
\end{align*}
$$

Equilibrium

- The equilibrium we have described is a steady-state equilibrium characterized by value functions U, W, J, V, a wage function w, a market tightness function θ, and steady-state level unemployment u, such that

1. A steady-state level of unemployment, derived from the flow unemployment equation.
2. A wage rule that splits the surplus of a match according to a sharing rule with bargaining weight β
3. A free entry condition that determines θ given wages and steady-state unemployment.

- What were these policy functions?

1. $w=(1-\beta) b+\beta p+\beta \theta \kappa$
2. $\theta=q^{-1}\left(\frac{\kappa(r+\delta)}{(p-w)}\right)$
3. $u=\frac{\delta}{\delta+p(\theta)}$

Equilibrium

Directed/Competitive Search

- In DMP, wages are negotiated/revealed after meeting.
- This can create inefficiency:

1. Consider example with unemployed workers A and B.
2. $w_{R}^{A}=10, w_{R}^{B}=15$
3. Firm pays a cost κ to open a vacancy and posts a wage 12 .
4. Both worker A and B apply for the job. Firm randomly picks worker B.
5. Worker B rejects job that would have been acceptable to worker A.

- Directed search: Worker B applies for different job with $w \geq w_{R}^{B}$.
- (Directed and competitive search generally used interchangeably).

The Competitive Search Model (Moen, 1997)

- Agents:

1. Employed workers employed in submarket i;
2. unemployed workers considering searching in $i \in\{1, \ldots, N\}$;
3. unmatched firms indexed by productivity $y_{i} \in y_{1}, \ldots, y_{N}$;
4. matched firms indexed by productivity $y_{i} \in y_{1}, \ldots, y_{N}$;
5. "Market Maker": benevolent overlord who announces eqm. w_{i}.

- Linearity: $\left(u=z, u=w_{i}\right)$ and $y=y_{i}>z$ in open submarkets.
- Matching function:

1. Determines number of meetings between firms \& workers in submarket i :

$$
\begin{equation*}
M\left(u_{i} L_{i}, v_{i} L_{i}\right)=u_{i} L_{i} \times M\left(1, \frac{v_{i}}{u_{i}}\right)=u_{i} L_{i} \times p\left(\theta_{i}\right) \tag{12}
\end{equation*}
$$

2. where $\theta_{i}=\frac{v_{i}}{u_{i}}$ is "submarket tightness"
3. Match rates:

$$
\begin{equation*}
\underbrace{p\left(\theta_{i}\right)}_{\text {lorker wage } i}=\theta_{i} \underbrace{q\left(\theta_{i}\right)}_{\text {Firm wage } i} \tag{13}
\end{equation*}
$$

- i indexes both the productivity and wage.

Worker Value Functions

- Value functions:

1. Employed in submarket $i: W_{i}$
2. Unemployed and searching in submarket $i: U_{i}$.
3. Unemployed: $U=\max \left\{U_{1}, \ldots, U_{N}\right\}$.

- Unemployed flow value in submarket i :

$$
\begin{equation*}
r U_{i}=z+p\left(\theta_{i}\right)\left(W_{i}-U_{i}\right) \tag{14}
\end{equation*}
$$

- Employed flow value in submarket i :

$$
\begin{equation*}
r W_{i}=w_{i}+\delta\left(U_{i}-W_{i}\right) \tag{15}
\end{equation*}
$$

- Both problems are stationary: optimal choice of i true $\forall t$.

Worker Value Functions II

- We can solve for match rates:

$$
\begin{align*}
r U_{i} & =z+p\left(\theta_{i}\right)\left(W_{i}-U_{i}\right) \tag{16}\\
\left(r+p\left(\theta_{i}\right)\right) U_{i} & =z+p\left(\theta_{i}\right) \frac{w_{i}+\delta U_{i}}{r+\delta} \tag{17}\\
(r+\delta)\left(r+p\left(\theta_{i}\right)\right) U_{i}-p\left(\theta_{i}\right) \delta U_{i} & =(r+\delta) z+p\left(\theta_{i}\right) w_{i} \tag{18}\\
r U_{i} & =\frac{(r+\delta) z+p\left(\theta_{i}\right) w_{i}}{\left(r+\delta+p\left(\theta_{i}\right)\right)} \tag{19}\\
p\left(\theta_{i}\right) & =\frac{r U_{i}-z}{w_{i}-r U_{i}}(r+\delta) \tag{20}
\end{align*}
$$

- $U=\max \left\{U_{1}, \ldots, U_{N}\right\}$ and ex-ante homogeneity among workers implies

$$
\begin{equation*}
p\left(\theta_{i}\right)=\frac{r U-z}{w_{i}-r U}(r+\delta) \tag{22}
\end{equation*}
$$

Firm Value Functions

- Pays a cost χ to draw productivity.
- Firm observes own productivity, chooses to open vacancy given submarkets (w, θ).
- Value functions:

1. Vacant with productivity $y_{i}: V\left(y_{i}, w, \theta\right)$
2. Filled with productivity y_{i}, paying wage $\mathrm{w}: J\left(y_{i}, w\right)$

- Vacant flow value:

$$
\begin{equation*}
r V\left(y_{i}, w, \theta\right)=-\kappa+q(\theta)\left(J\left(y_{i}, w\right)-V\left(y_{i}, w, \theta\right)\right) \tag{24}
\end{equation*}
$$

- Matched flow value:

$$
\begin{equation*}
r J\left(y_{i}, w\right)=y_{i}-w+\delta\left(V\left(y_{i}, w, \theta\right)-J\left(y_{i}, w\right)\right) \tag{25}
\end{equation*}
$$

Firm Value Functions II

- Value functions:

1. Vacant with productivity $y_{i}: V\left(y_{i}, w, \theta\right)$
2. Filled with productivity y_{i}, paying wage $w: J\left(y_{i}, w\right)$

- In equilibrium $V\left(y_{i}, w, \theta\right)=0$:

$$
\begin{equation*}
r J\left(y_{i}, w\right)=y_{i}-w-\delta J\left(y_{i}, w\right) \tag{26}
\end{equation*}
$$

- Asset value of vacancy in submarket $\left(y_{i}, w, \theta\right)$:

$$
\begin{equation*}
(r+q(\theta)) V\left(y_{i}, w, \theta\right)=q(\theta) \frac{y_{i}-w}{r+\delta}-\kappa \tag{27}
\end{equation*}
$$

Equilibrium

- We will be interested in the same equilibrium objects, but now for each submarket i :

1. Wages w_{i};
2. unemployment u_{i};
3. $\theta_{i}=\frac{v_{i}}{u_{i}}$ vacancies in each submarket.

- Before, $1 \& 3$ were separate equilibrium conditions.
- New equilibrium objects

1. set of open submarkets, \mathcal{I};
2. value of unemployment $\bar{V}(U)$

- Market maker sets wages according to

$$
\begin{equation*}
\max _{w} V\left(y_{i}, w, \theta(w ; U)\right) \tag{28}
\end{equation*}
$$

- Given $p(\theta)$ from worker's problem, find w that maximizes value of vacancy.

Free Entry

- Free entry implies that the expected value of opening a vacancy will be equal to the cost of opening it χ
- The expected value of opening a vacancy

$$
\bar{V}(U)=\sum_{i=\iota(U)}^{n} f_{i} V\left(y_{i}, w_{i}^{*}(U), \theta_{i}^{*}(U)\right)
$$

- equilibrium:

$$
\bar{V}(U)=\kappa
$$

Equilibrium Number of Markets

- We know that each productivity will form a separate market
- There are n productivities in the distribution
- All submarkets such that $w_{i} \geq r U$ will remain open
- Let ι denote the lowest submarket open

"Competitive" Search

- What is shaded region?

"Competitive" Search

- Inefficiency (rejected matches in DMP)

Equilibrium

- The resulting competitive equilibrium with frictional labor markets is characterized by the following equations

$$
\begin{align*}
\bar{V}(U) & =\chi \tag{29}\\
w_{i} & =\arg \max V\left(y_{i}, w, \theta(w ; U)\right), i \geq i_{R} \tag{30}\\
r U_{i} & =\frac{(r+\delta) z+p\left(\theta_{i}\right) w_{i}}{\left(r+\delta+p\left(\theta_{i}\right)\right)}, i \geq i_{R} \tag{31}\\
\dot{u}_{i} & =0 ; u_{i} p\left(\theta_{i}\right)=e_{i} \delta \tag{32}\\
\sum_{i} u_{i} & =u \tag{33}
\end{align*}
$$

What is "valuable" about directed search?

- Submarkets are individually priced.
- i.e., contracts (w, θ) are known given the state of the worker and firm.
- Then, assuming that free entry binds in every open submarket, no longer need to condition on aggregate distributions as state variables (Menzio and Shi, 2011).
- So models are computationally tractable.
- Makes it possible to easily incorporate heterogeneity.

Conclusion

- Thank you for a good semester!
- Hope everyone has a good summer and please come visit once we can all be in person.
- Final on Friday, 24 hours to take exam, 3 hours to complete once started.
- 3 questions, anything is fair game.

