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Announcements

I Briefly review beliefs and rational expectations.

I Show a model of inequality derived from beliefs.

I Presentation schedule?
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Portfolio Problem

I Consider a portfolio allocation problem in which an agent
chooses between one of two assets:

1. Asset asafe offers a return of rF , which is known with certainty.

2. Asset arisky offers a return of rR , rR > rF with probability λ
and 0 with probability (1 − λ),

I Agents maximize a static portfolio problem:

V (m) = max
asafe ,arisky

λu(c ′
H) + (1 − λ)u(c ′

L) (1)

c ′
H = (1 + rF )asafe + (1 + rR)arisky (2)
c ′

L = (1 + rF )asafe + arisky (3)
m = asafe + arisky (4)
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Parameter Uncertainty

I What if λ is type-specific?

I Asset arisky offers a return of rR

1. with probability λH for a high-type and λL for a low-type

2. and 0, with probability (1 − λH) for a high-type and (1 − λL)
for a low-type.

3. Agents endowed with prior belief that they are high type,
θi ∈ [0, 1]

I Prior beliefs drawn from uniform distribution g(θi) ∼ U(0, 1).

I Belief distribution is agent-specific: h(θi) may differ based on
history. Initially h(θi) = g(θi) = θ

I For simplicity ignore bandit problem.
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Signal Extraction
I Bayes theorem:

h(θ′|c ′) =
f (c ′|λ)b(λ|θ)g(θ)

f (y) (5)

I Binomial likelihood:
f (cH |λ) = λ

1c′=cH (1 − λ)
1−1c′=cH (6)

I Binomial likelihood:
b(λ|θ) = λHwith prob.θ = λLwith prob.(1 − θ) (7)

I Prior Distribution (U(0, 1)):
g(θ) = θ, θ ∈ [0, 1], 0 else (8)

I Updating (f (y) = 1):

h(θ′|c ′ = c ′
H) =

λHθ

λHθ + λL(1 − θ)
(9)

h(θ′|c ′ = c ′
L) =

(1 − λH)θ

(1 − λH)θ + (1 − λL)(1 − θ)
(10)
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Discussion

I Updating (f (y) = 1):

h(θ′|c ′ = c ′
H) =

λHθ

λHθ + λL(1 − θ)
(11)

h(θ′|c ′ = c ′
L) =

(1 − λH)θ

(1 − λH)θ + (1 − λL)(1 − θ)
(12)

I Thoughts about this updating:

I Can beliefs persist? What would drive this?

I What if parameters are group-specific?
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Question

Can poor initial labor market outcomes slow learning and entrench
beliefs ?
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Motivation

Data from the SCE: expectations on labor market prospects

◦ Stylized Fact 1: Average beliefs about job-finding rate are
optimistic (Mueller et al 2021) (Spinnewijn 2015) (Conlon et
al 2018)

◦ Stylized Fact 2: Initial aggregate outcomes (of group) matter
for current expectations of job-finding
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Motivation

Data from the SCE: expectations on labor market prospects

◦ Stylized Fact 1: Average beliefs about job-finding rate are
optimistic (Mueller et al 2021) (Spinnewijn 2015) (Conlon et
al 2018)

◦ Stylized Fact 2: Initial aggregate outcomes (of group) matter
for current expectations of job-finding

Want a model that can explain why average beliefs are not equal
to fundamentals and where initial aggregate outcomes impact
current beliefs
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Mechanism

◦ Uncertainty over group fundamentals: labor market prospects
for a group

� By group: individuals who are similar to each other, e.g., same
gender, cohort, etc.

◦ Participation is costly

◦ Social learning: learn by observing the actions of others
similar to you

◦ Degree of participation affects informativeness of signal
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Mechanism

◦ Uncertainty over group fundamentals: labor market prospects
for a group

◦ Participation is costly

� =⇒ experimentation is costly

◦ Social learning: learn by observing the actions of others
similar to you

◦ Degree of participation affects informativeness of signal
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Mechanism

◦ Uncertainty over group fundamentals: labor market prospects
for a group

◦ Participation is costly

◦ Social learning: learn by observing the actions of others
similar to you

� Learn by looking at noisy public signals (such as share who
participates)

◦ Degree of participation affects informativeness of signal
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for a group
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Mechanism

◦ Uncertainty over group fundamentals: labor market prospects
for a group

◦ Participation is costly

◦ Social learning: learn by observing the actions of others
similar to you

◦ Degree of participation affects informativeness of signal

◦ Noisier signals =⇒ slows learning and entrenchment of
beliefs.
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Rationalizing the stylized facts

◦ Learning about group fundamental from endogenous public
signals: =⇒ same common signal, average beliefs can
deviate from average realization

� Learning about individual types from exogenous or endogenous
private signals =⇒ economy-wide average belief= average
realization indtype_endo indtype_exo

◦ Initial endogenous labor market outcomes affect info. quality
of signals, and rate of learning, thus impacting current beliefs

◦ This paper: jointly rationalizes optimistic beliefs and initial
conditions mattering for current beliefs

privateendo
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Rationalizing the stylized facts

◦ Learning about group fundamental from endogenous public
signals: =⇒ same common signal, average beliefs can
deviate from average realization

◦ Initial endogenous labor market outcomes affect info. quality
of signals, and rate of learning, thus impacting current beliefs

� Subjective beliefs in form of constant gain learning (Branch
and Evans (2006)): initial conditions matter less and less for
current beliefs subjective

◦ This paper: jointly rationalizes optimistic beliefs and initial
conditions mattering for current beliefs

privateendo
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Roadmap
◦ Empirical findings (Brief)

� Fact 1 well-documented, 8 pp gap (Mueller et al 2021), 6 pp
gap (this paper) fact1

� Focus more on fact 2

◦ PE model of learning from endogenous public signals

◦ Quantitative analysis

� Model explains 1/4 to 1/3 of empirical gap + persistence of
beliefs

◦ Extensions (in paper): 1) learning from other public signals, 2)
learning with private outcomes and endogenous public signals
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Data



Key question in SCE

“... what do you think is the percent chance that within the
coming 3 months, you will find a job that you will accept? ”
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Stylized Fact 2: Initial outcomes matter for expectations

◦ Regress expected job-finding on local initial participation
(LFPR). Local=state. Proxy for initial entry with age 18 if <
college, age 22 if >=college. nepop

Expected Job Finding

(1) (2) (3) (4)

Local current LFPR �0.24 �0.33 �0.08 0.01
(0.24) (0.26) (0.31) (0.56)

Local initial LFPR 0.46⇤ 0.27 �0.16 0.16
(0.23) (0.27) (0.33) (0.47)

Local initial LFPR (18-24) - 0.27⇤⇤⇤ 0.32⇤⇤⇤ 0.28⇤⇤

- (0.10) (0.10) (0.14)

Local current u - - �0.55 �0.22
- - (0.41) (0.41)

Aggregate u (25-54yrs) �2.36⇤⇤⇤ �2.18⇤⇤⇤ �1.54⇤⇤ �1.82⇤⇤⇤

(0.30) (0.31) (0.51) (0.54)
Controls Yes Yes Yes Yes

State Fixed E↵ects No No No Yes

Observations 50,581 40,023 40,023 40,023

1
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Environment

◦ Economy populated with unit mass of cohorts

◦ Each cohort has measure 1 of individuals who live T periods

◦ Denote the age of a cohort by τ

◦ Time is discrete, agents are risk-neutral and discount future
with factor β
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Environment

◦ Individual can be employed or non-employed

◦ Employed earn a wage w

◦ Non-employed consume home production b

◦ Non-employed can choose to search and be unemployed or
stay out-of-the-labor-force (OLF)

◦ Incur flow cost c if participate and search for a job
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Environment

◦ All agents know aggregate productivity at which evolves
according to:

at = ρat−1 + εt where εt ∼ N (0, σ2
ε)

◦ Group fundamental z is iid draw from distribution Π(z) at
time cohort enters

◦ Both at and z affect job-finding rate rates: f (at , z):
fa(·), fz(·) > 0

◦ Individuals do not know their group fundamental z and have
to learn about it
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Information

◦ At entry (τ = 0), agents endowed with exogenous private
signal once and for all:

si = z + εi where εi ∼ N (0, σ2
ε )

◦ Agents observe an endogenous public signal of z at end of
each period:

� Noisy signal of participation rate of individuals aged τ at date
t: ̂̀t(τ)

̂̀t(τ) = `t(τ) + ξt(τ) where ∀τ, ξt(τ) ∼ N (0, σ2
ξ)
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Public beliefs
◦ Public info at start of t relevant to age τ :
It−1(τ) = {̂̀t−1(τ − 1), . . . , ̂̀1(1)}

◦ Public belief at start of t (end of t − 1) for age τ : ht−1(z , τ).

� Public prior = belief that outsider forms if only have access to
It−1(τ).

◦ Individuals know It−1(τ) and their own si =⇒ private beliefs
hit(z , τ)

◦ si drawn once, It(τ) evolving, hit(z , τ) recovered from
ht−1(z , τ)
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Timing

◦ Aggregate productivity at realized and separation shocks
occur with probability δ

◦ Non-employed given private beliefs hit(z) choose whether to
participate

◦ Search and matching occurs

◦ Public signal, ̂̀t , observed

◦ Update beliefs

Professor Griffy (UAlbany)



Values
If z is known:

◦ Value of non-employment of age τ , fundamental z , and
aggregate productivity at :

V N (at , z , τ) = max
{

V O (at , z , τ) ,V U (at , z , τ)− c
}

◦ Value of OLF:
V O (at , z , τ) = b + βEaV N (at+1, z , τ + 1)

◦ Value of unemployment
V U (at , z , τ) = f (at , z) Ṽ W (at , z , τ)+[1 − f (at , z)]V O (at , z , τ)
where

Ṽ W (at , z , τ) = w + βEaV W (at+1, z , τ + 1)
◦ Value of employment

V W (at , z , τ) = [1 − δ] Ṽ W (at , z , τ) + δV O (at , z , τ)
and

Ṽ W (at , z , τ) = w + βEaV W (at+1, z , τ + 1)Professor Griffy (UAlbany)
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Individual’s choice problem
But z is not known:

◦ Each individual i makes choice of whether to participate based
on her beliefs:

max
{
EitV O (at , z , τ) ,EitV U (at , z , τ)− c

}
◦ Using Bayes rule and given si , back out private beliefs from

public beliefs as:

hit (z , τ) =
ht−1 (z , τ)ϕ (si | z)∫
ht−1 (z̃ , τ)ϕ (si | z̃) dz̃

where ϕ (si |z) = φ

(
si − z
σε

)
◦ Exists s∗t (τ) such that:∫ [

V U (at , z , τ)− V O (at , z , τ)− c
] ht−1 (z , τ)ϕ (s∗t [τ ] | z)∫

ht−1 (z̃ , τ)ϕ (s∗t [τ ] | z̃) dz̃
dz = 0
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Individual’s choice problem
:

◦ Using Bayes rule and given si , back out private beliefs from
public beliefs as:

hit (z , τ) =
ht−1 (z , τ)ϕ (si | z)∫
ht−1 (z̃ , τ)ϕ (si | z̃) dz̃

where ϕ (si |z) = φ

(
si − z
σε

)
◦ Individual participates so long as:

∫ V U (at , z , τ)− c︸ ︷︷ ︸
net value of search

−V O (at , z , τ)

 hit (z , τ)dz ≥ 0

◦ Exists s∗t (τ) such that:∫ [
V U (at , z , τ)− V O (at , z , τ)− c

] ht−1 (z , τ)ϕ (s∗t [τ ] | z)∫
ht−1 (z̃ , τ)ϕ (s∗t [τ ] | z̃) dz̃

dz = 0
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Individual’s choice problem

:
◦ Using Bayes rule and given si , back out private beliefs from

public beliefs as:
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where ϕ (si |z) = φ

(
si − z
σε

)
◦ Exists s∗t (τ) such that:∫ [
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Actual outcomes vs. signals

◦ All individuals with si ≥ s∗t (τ) participate, share of
non-employed who participate:

pt(τ) = 1 − Φ

(
s∗t (τ)− z

σε

)
◦ and true non-employment rate is:

nt (τ) = [1 − f (at , z) pt (τ)] nt−1 (τ − 1)+δ [1 − nt−1 (τ − 1)]

◦ and actual labor force participation rate at end of period:

`t(τ) = 1 − nt−1 (τ − 1) [1 − pt (τ)] = 1 − mt(τ)nt−1(τ − 1)

where mt(τ) is share of non-employed at end of t − 1 who
didn’t participate in t.
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Actual outcomes vs. signals

◦ But individuals only observe noisy signal of `t(τ)̂̀t (τ) = `t (τ) + ξt (τ)
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Updating

◦ Agents know structure of model and public belief =⇒ can
compute s∗t (τ).

◦ For any z , individuals can compute counterfactual pt(τ ; z),
nt(τ ; z) =⇒ `t(τ ; z):

`t(τ ; z) = 1 − nt−1 (τ − 1; z) [1 − pt (τ ; z)]
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Updating

◦ If fundamental = z , observing ̂̀t(τ) =⇒ noise of magnitudềt (τ)− `t (τ ; z)

◦ Given noisy signals, posterior public belief becomes:

ht (z , τ + 1) =
ht−1 (z , τ)

probability density of observing noise of this magnitude︷ ︸︸ ︷
φ

(̂̀t (τ)− `t (τ ; z)
σξ

)
∫

ht−1 (z̃ , τ)φ
( ̂̀t(τ)−`t(τ ;z̃)

σξ

)
dz̃
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Informativeness of signal varies in aggregate action

Initial conditions affects s∗ and thus, participation,
Participation matters for informativeness of endogenous public

signal
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A simple example

◦ 1-shot model. n0 = 1, `1 = 1 − n0 (1 − p1) = p1

◦ Further assume z ∼ N (µz , σ
2
z )

◦ Participate if si ≥ s∗ =⇒ :

p1 = 1 − Φ

(
s∗ − z
σε

)
◦ Denote m1 = 1 − p1, i.e., measure of non-participation

m1 = Φ

(
s∗ − z
σε

)
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A simple example
◦ Take linear approximation and suppose m̃1 is a noisy signal of

m1

m̃1 = Φ

(
s∗ − µz

σε

)
+φ

(
s∗ − µz

σε

)
(z−µz)+ξ where ξ ∼ N (0, σ2

ξ )

◦ Since s∗,µz and σ2
ε known, m̃1 informationally equivalent to

m̂1

m̂1 = m̃1−Φ

(
s∗ − µz

σε

)
+φ

(
s∗ − µz

σε

)
µz= φ

(
s∗ − µz

σε

)
z + ξ

◦ Noisy signal m̂1:

m̂1 = φ

(
s∗ − µz

σε

)
z + ξ

◦ Signal-to-noise ratio given by:[
φ

(
s∗1 − µz

σε

)]2σ2
z

σ2
ξ
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Signal-to-noise ratio non-monotonically changing with s∗
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Calibration

◦ Calibrate to deterministic steady state

◦ Period is a quarter, cohort lives T = 180 quarters, perpetual
youth

◦ Set parameters: β = 0.99, w = 1, b = 0.4, δ = 0.076

◦ z drawn from Beta distribution z ∼ Beta(Az ,Bz)

◦ Noise terms normally distributed:ε ∼ N (0, σ2
ε ), ξ ∼ N (0, σ2

ξ )

◦ Job finding f (a, z) = exp(−(1 − a − z))
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Calibration

◦ Parameters to calibrate: {Az ,Bz , σε, σξ, c}
Table 1: Internally calibrated parameters

Parameter Description Value Target Model Data

Az Beta dist parameter 6.07 Mean job-finding rate, f 0.499 0.490

Bz Beta dist parameter 14.37 Std dev. job-finding rate, f 0.051 0.052

c Participation cost 3.27 Prime-age participation 0.818 0.820

�✏ Dispersion in ✏ 0.36 Std dev. perceived f , 18-24 0.056 0.060

�⇠ Dispersion in ⇠ 0.14 Std dev. perceived f , 25-54 0.043 0.046

Notes: Dispersion in perceived job-finding rates for the relevant age group is computed as the standard deviation in predicted perceived job-finding
rates after controlling for aggregate fluctuations

1
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Thought Experiment

◦ Simulate model with same number of cohorts as SCE data
(40)

◦ Aggregate shocks = cyclical component of empirical
job-finding rates

1980q1 1990q1 2000q1 2010q1 2020q1
-0.1

-0.05

0

0.05

0.1

0.15

data on cyclical UE starts here

2013q1 2014q4 2016q4 2018q4 2020q4 2022q4
0.4

0.45

0.5

0.55

0.6
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Model predictions

◦ Average perceived job-finding rate about 2 percentage points
higher than realized, ≈ 1/3 (6pp) to 1/4 of gap (8pp)

2013q1 2014q4 2016q4 2018q4 2020q4 2022q4
0.46

0.48

0.5

0.52

0.54

0.56
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Model Predictions
◦ Run same regression in model as in data

◦ Key independent variable: initial labor force participation rate
of cohort (1st year)

Expected Job Finding

(1) (2)

Initial LFPRc 0.066⇤⇤⇤ 0.237⇤⇤⇤

(0.000) (0.001)
Initial LFPR

2
c �0.176⇤⇤⇤

(0.001)

at 0.689⇤⇤⇤ 0.705⇤⇤⇤

(0.003) (0.003)

Observations 1,200,000 1,200,000

R2
0.119 0.140

1
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Initial conditions matter
◦ Recession cohort (2009): p1 extremely low, h1 little

unchanged from h0
◦ Expansion cohort (2000): p1 extremely high, h1 also little

unchanged

◦ a1 = 0 cohort (1998): p1 moderate, public signal more
informative, faster learning
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Entrenched beliefs
◦ Persistently pessimistic (optimistic) beliefs for deep recession

(expansion) cohorts
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Overview

I PE model to rationalize how initial group labor market
outcomes can impact learning and entrench beliefs

I Optimism and pessimism can affect informativeness of signal

I Model predicts optimistic 1) job-finding beliefs and 2) initial
outcomes weigh on current beliefs, making them persistently
optimistic, pessimistic
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Conclusion

I Two ways to approach quantitative macro:

I Seek permission: look for empirical regularities and write down
model to try and explain them.

I Ask forgiveness: write down model and then look for empirical
regularities consistent with equilibrium.

I Both are valid ways to approach quantitative macro, and both
can involve sunk costs.

I Final due date for full project? Sometime around Dec 12th.

Professor Griffy (UAlbany)



Learning from private endogenous signals

I Suppose true job-finding rate p∗ drawn

I All individuals start off with prior beliefs f0(p; p∗) such that:∫
pf0(p; p∗)dp = p∗

I Suppose individuals search. Let s = 1 if individual finds job,
s = 0 otherwise.

I Average beliefs equal fundamental
back
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I Suppose individuals search. Let s = 1 if individual finds job,
s = 0 otherwise.

f1(p | s = 1; p∗) =
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and
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Learning from private endogenous signals
I Suppose true job-finding rate p∗ drawn

I All individuals start off with prior beliefs f0(p; p∗) such that:∫
pf0(p; p∗)dp = p∗

I Suppose individuals search. Let s = 1 if individual finds job,
s = 0 otherwise.

I Average beliefs equal fundamental∫
pf1 (p) dp =

∫
p [f1 (p | s = 1) p∗ + f1 (p | s = 0) (1 − p∗)] dp

=

∫
p [pf0 (p; p∗) + (1 − p) f0 (p; p∗)] dp

= p∗

back
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Learning from private outcomes

I 2nd period, suppose employed don’t search anymore, and
fraction m non-employed also don’t search

I Posterior density , non-participants:

I Average beliefs equal fundamental back
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Learning from private outcomes
I 2nd period, suppose employed don’t search anymore, and

fraction m non-employed also don’t search

I Posterior density , non-participants:

f2(p | s1 = j ; p∗) = f1(p | s1 = j ; p∗) for j ∈ {0, 1}

and unemployed who searched and found job in period 2

f2 (p | s1 = 0, s2 = 1; p∗) =
pf1(p | s1 = 0; p∗)

p∗ =
p (1 − p) f0 (p; p∗)

p∗ (1 − p∗)

and unemployed who searched but didn’t find job in period 2

f2 (p | s1 = 0, s2 = 0; p∗) =
(1 − p)f1(p | s1 = 0; p∗)

(1 − p∗)
=

(1 − p)2 f (p)
(1 − p∗)2

I Average beliefs equal fundamental back
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Learning from private outcomes
I 2nd period, suppose employed don’t search anymore, and

fraction m non-employed also don’t search

I Posterior density , non-participants:
I Average beliefs equal fundamental Suppressing dependence

on p∗ in f :∫
pf2 (p) dp =

∫
p {f2 (p | s1 = 1) p∗ + mf2 (p | s1 = 0) (1 − p∗)} dp

+(1 − m)

∫
pf2 (p | s1 = 0, s2 = 1) p∗(1 − p∗)dp

+(1 − m)

∫
pf2 (p | s1 = 0, s2 = 0) (1 − p∗)2dp

=

∫
p {p + (1 − m) (1 − p) + m [1 − p]} f (p) dp

= p∗

back
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Learning about individual type, exogenous signals
I Measure 1 population. Each individual’s type z is iid draw

from distribution N(µz , 1/ρz) where ρz = 1/σ2
z .

I Assume job-finding, p is function of z . E.g. p(z) = exp(z)
1+exp(z)

I Every period, noisy signal of z

sit = zi + εit where εit ∼ N(0, 1/ρε)

I End of period 1, individual’s posterior precision given by:

ρ′ = ρε + ρz

posterior mean:

µ′
i(s | z) = ρε

ρ′
s +

(
1 − ρε

ρ′

)
µz
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Learning about individual type, exogenous signals

I Denote α = ρε
ρ′ . Integrate across s and z to get average belief

in economy:

∫ ∫
{αs + (1 − α)µz}

conditional on z, pdf of drawing s︷ ︸︸ ︷
φ

(
s − z
σε

)
ds φ

(
z − µz
σz

)
︸ ︷︷ ︸

measure drawing z

dz = µz

I µz is also average realization in economy.

I Thus, average belief = average realization back
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Learning about individual type, endogenous signals

I Measure 1 population. Suppose each individual draw
job-finding rate from G (p)

I g(p∗) measure draw p = p∗

I Require ∫
p∗g(p∗)dp = p

where p = mean of G(p).
back
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Learning about individual type, endogenous signals

I Suppose each individual has initial unbiased beliefs
f0(p) = g(p).

I Let s = 1 be event find job, s = 0 event do not find job

I Given true individual job-finding rate p∗, posterior:

f1(p | s = 1; p∗) =
pf0(p)

p∗

f1(p | s = 0; p∗) =
(1 − p)f0(p)

1 − p∗
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Learning about individual type, endogenous signals
I Average economy-wide belief:∫ {∫

pf1(p; p∗)dp
}

g(p∗)dp∗

I Plugging in posterior beliefs, inner integral is:

∫
p

pg(p)+(1−p)g(p)︷ ︸︸ ︷
[f1(p | s = 1; p∗)p∗ + f1(p | s = 0; p∗)(1 − p∗)] dp = p

I So average economy wide beliefs:∫ {∫
pf1(p; p∗)dp

}
g(p∗)dp∗ =

∫
pg(p∗)dp∗ = p

Average belief = fundamental
back
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Constant gain learning
I Literature has looked at subjective beliefs, particularly

constant-gain learning because best fit survey expectations
(Branch and Evans (2006))

I Individuals have true z∗, start with some prior z0 at date 0.
I Every period, individuals observe a noisy signal of z∗,

νt = z∗ + εt , εt is iid noise term.
I Learning rule:

zt = zt−1 + γ(νt − zt−1) = (1 − γ)zt−1 + γνt

where γ is learning parameter on “surprise” (νt − zt−1)
I Iterate forward:

zt = (1 − γ)t z0 + γ
t∑

j=1
(1 − γ)t−j νj

I Past matters less and less for current beliefs
back
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Comparison with Mueller et al (2021)

back
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Stylized Fact 1: Average beliefs are optimistic

◦ 8pp gap (all), 6pp gap (equal weight employed and
unemployed) mueller roadmap

2013-2022 SCE and CPS results on prime-age workers
Perceived Realized

All
SCE 0.57 -
CPS - 0.49

Unemployed
SCE 0.54 0.45

Employed
SCE 0.57 -
All durations, CPS - 0.49
< 27wks, CPS - 0.54

Mueller et al (2021) results on 20-65 yrs (2013-2019)
Unemployed 0.49 0.41

2013-2022 SCE and CPS results on prime-age workers
Perceived Realized

SCE results on 20-65 yrs (2013-2019m6)
Mueller et al (2021)

Unemployed, All durations 0.49 0.41
Unemployed, < 27 weeks 0.59 0.59

SCE Public-use
Unemployed, All durations 0.49 0.39
Unemployed, < 27 weeks 0.57 0.53

1
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Initial non-employment rates of group also affect
expectations

[◦] Regress expected job-finding on initial non-employment

rate

Expected Job Finding

(1) (2) (3) (4)

Local current NE/POP 0.09 0.02 0.09 �0.02
(0.20) (0.28) (0.33) (0.60)

Local initial NE/POP �0.31 0.12 0.17 �0.19
(0.19) (0.28) (0.34) (0.49)

Local initial NE/POP (18-24) - �0.30⇤⇤⇤ �0.36⇤⇤⇤ �0.32⇤

- (0.08) (0.12) (0.16)

Local current u - - �0.60⇤⇤ �0.22
- - (0.41) (0.40)

Aggregate u (25-54yrs) �2.38⇤⇤⇤ �2.02⇤⇤⇤ �1.55⇤⇤⇤ �1.81⇤⇤⇤

(0.35) (0.39) (0.51) (0.55)
Controls Yes Yes Yes Yes

State Fixed E↵ects No No No Yes

Observations 50,581 40,023 40,023 40,023

1

back
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Extensions



Extension: learning with private outcomes and public
signals

◦ Private signal si at date 0, observe noisy public signal and
own outcome at every t

� Both private and public information evolving over time

◦ Need to keep track of distribution of distribution of beliefs

◦ Simplification: binary z ∈ {zH , zL} where zH > zL, hit =
probability zH

� Individual’s belief summarized by 1 variable: hit . Track
distribution of h

◦ By construction, mean belief lies between [zL, zH ], focus on
persistence of beliefs
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Extension: learning with private outcomes and public
signals

◦ Persistence in beliefs even when allow learning from private
outcomes
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0.65

Perceived Realized

◦ Gap larger for zL. Although same threshold belief h̃∗
1 in period

1, p1 lower since si is unbiased noisy signal around true z
=⇒ less informative public signalProfessor Griffy (UAlbany)
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