Professor: *Benjamin Griffy* Due: *May 8th*, 2025 AECO 701

Problem Set 6

Problem 1: Solving the McCall Model Consider a McCall model of labor market dynamics. Agents can be in one of two states: employed or unemployed. When unemployed, agents receive a job offer at rate λ and enjoy b units of leisure utility. Any job offer they receive is a wage w drawn from a known distribution $F(\cdot)$ with support $[\underline{w}, \overline{w}]$. Once employed, workers receive w income as utility (agents are risk neutral), and separate from their employer at rate δ . They discount the future at rate β and time is discrete. The Bellman Equation of an unemployed worker is given by

$$U = b + \beta \left[\lambda \int_{\underline{w}}^{\overline{w}} \max\{V(w), U\} dF(w) + (1 - \lambda)U \right]$$
(1)

The Bellman Equation of an employed worker is given by

$$V(w) = w + \beta[(1 - \delta)V(w) + \delta U]$$
⁽²⁾

- **a**) Define the equilibrium in this model.
- b) Solve for an analytical expression that characterizes the reservation wage. This will be an implicit function. Recall that the reservation wage is defined as $V(w_R) = U$.
- c) Assume the following values and functional forms (from Hornstein, Krussell, Violante, 2011): $\lambda = 0.43, b = 0.4, \delta = 0.03, \beta = 0.99$, and $F(\cdot)$ is distributed log-normally with $\mu = 0.5, \sigma =$ 2.5. Solve for the numerical value of the reservation wage in this context (use follow on your expression for $w_R - f(w_R) = 0$).
- d) Now, instead of solving the reservation wage equation directly, use value function iteration on the two Bellman equations. To do this, set up a grid of wages over the wage distribution and iterate to convergence. Compare your solutions. Choose $V(w)_0 = 0$ and U = 0 as your initial points (you could also choose $V(w)_0 = \frac{b}{1-\beta}$ and $U = \frac{b}{1-\beta}$. Why?)