Macro II

Professor Griffy

UAlbany

Spring 2025

Announcements

- Today: Solving heterogeneous agent models.
- Idea:
 - Solving these models is non-trivial.
 - Must consider the state of every agent in economy.
- Homework on solving heterogeneous agent models.
- Start from the code on the cluster.

Heterogeneous Agent Production Economy

In a production economy, the agent's problem is given by

$$V(k,\epsilon;\psi) = u(c) + \beta E[V(k'\epsilon';\psi')]$$
(1)

s.t.
$$c + k' \leq (1 + r(K, L) - \delta)k + w(K, L)\epsilon$$
 (2)

$$k' \ge \underline{k} \tag{3}$$

$$\epsilon \sim \text{ Markov } P(\epsilon'|\epsilon)$$
 (4)

$$\psi' = \Psi(\psi) \tag{5}$$

$$c \ge 0, k \ge 0, k_0$$
 given (6)

- e is a markov process that yields hours worked.
- Ψ is an unspecified evolution of the aggregate state (k, ϵ) .
- Prices are determined from the firm's problem

- How we handle prices determines the difficulty of this problem.
- In this economy, a single firm produces using labor (hours) and capital.

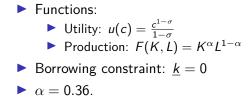
$$\Pi = \max_{K,L} F(K,L) - wL - rK$$
(7)

This yields standard competitive prices for the rental rates.

Stationary Recursive Competitive Equilibrium

- A stationary RCE is given by pricing functions r, w, a worker value function V(k, ε; ψ), worker decision rules k', c, a type-distribution ψ(k, ε), and aggregates K and L that satisfy
 - 1. k' and c are the optimal solutions to the worker's problem given prices.
 - 2. Prices are formed competitively from the firm's problem.
 - 3. Consistency between aggregate evolution and individual decision rules: ψ is the stationary distribution implied by worker decision rules.
 - 4. Aggregates are consistent with individual policy rules: $K = \int k d\psi$, $L = \int \epsilon d\psi$

Calibration



Solving the Model: Market Clearing

In equilibrium

$$K = \sum_{k} \sum_{\epsilon} k_{s}(k,\epsilon) \psi(k,\epsilon)$$
(8)

- where k_s is the supply of savings.
- What must the equilibrium prices satisfy?

$$r = F_{\mathcal{K}}(\mathcal{K}_D, L) \tag{9}$$

$$\mathcal{K}_D(r) = \mathcal{K}_S(r) \tag{10}$$

- Fixing K_D or r yields the other variable.
- Thus, one approach is to "guess" the equilibrium and iterate until we guess correctly.

A Solution Technique: The Shooting Algorithm

- Guess r. Yields K_D and w from $r = F_K(K_D, L)$ and $w = F_L$.
- Now, given this price, calculate the *individual* savings rule.
- Simulate the economy far enough into future to reach a steady-state distribution of capital.
- Check and see if $K_D = K_S$.
- If not, adjust guess of interest rate according to following:

$$r' = r + \lambda (K_D - K_S) \tag{11}$$

 $\blacktriangleright \text{ where } \lambda < 1$

A Solution Technique: The Shooting Algorithm

Adjusting interest rates:

$$r' = r + \lambda (K_D - K_S) \tag{12}$$

• If $K_S > K_D$: too much savings.

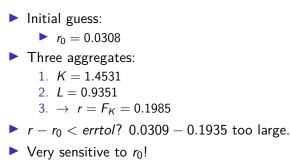
Interest rate must fall to be in equilibrium.

First iteration

Initial guess: r₀ = 0.03093 Three aggregates: 1. K = 8.8342 2. L = 0.8582 3. → r = F_K = 0.0204 r - r₀ < errtol? 0.0309 - 0.0204 too large.

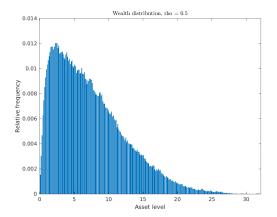
• Algorithm: fzero \rightarrow pick local r_1 and try again.

Second iteration



Converged Wealth Dist.

Final wealth distribution after convergence:



Another Solution technique: Root-Finding and Excess Demand

- Functionally, this is the same as what we just did.
- Suppose we solve household decision rules k, and r.
- Then, the excess demand function is

$$\Delta(r) = K_D(r) - K_S(r) \tag{13}$$

- Where we have solved K_D for many values of r and have an expression for $K_S(r)$ (static firm optimization).
- Do one-dimensional root finding, i.e., find r* such that

$$0 = \Delta(r^*) = K_D(r^*) - K_S(r^*)$$
(14)

Aggregate Uncertainty

What about aggregate uncertainty? The distribution is no longer stationary, hence no longer the equilibrium.

Aggregate Uncertainty

In a production economy, the agent's problem is given by

$$V(k,\epsilon;z,\psi) = u(c) + \beta E[V(k',\epsilon';z',\psi')]$$
(15)

s.t.
$$c + k' \leq (1 + r(z, K, L) - \delta)k + w(z, K, L)\epsilon$$
 (16)
 $k' \geq k$ (17)

$$' \ge \underline{k}$$
 (17)

$$z' = Markov P(z'|z)$$
 (18)

$$\epsilon \sim \mathsf{Markov} P(\epsilon' | \epsilon, z')$$
 (19)

$$\psi' = \Psi(\psi, z, z') \tag{20}$$

$$c \ge 0, k \ge 0, k_0$$
 given, z_0 given (21)

- \bullet is a markov process for employment $\epsilon \in \{0, 1\}$
- \blacktriangleright Ψ is an unspecified evolution of the aggregate state.
- z also evolves as a markov process.
- Prices are determined from the firm's problem.

- How we handle prices determines the difficulty of this problem.
- In this economy, a single firm produces using labor (hours) and capital.

$$\Pi = \max_{K,L} zF(K,L) - wL - rK$$
(22)

This yields standard competitive prices for the rental rates.

Laws of Motion

- The future aggregate state enters the probability of employment.
- > This means that it impacts **all** of the laws of motion:

$$z' = Markov P(z'|z)$$
 (23)

$$\epsilon \sim \operatorname{Markov} P(\epsilon' | \epsilon, z')$$
 (24)

$$k' \leq (1 + r(z, K, L) - \delta)k + w(z, K, L)\epsilon - c \qquad (25)$$

$$\psi' = \Psi(\psi, z, z') \qquad (26)$$

Because shocks to z change employment status and prices.

Recursive Competitive Equilibrium

- An RCE is given by pricing functions r, w, a worker value function V(k, ε, z; ψ), worker decision rules k', c, a type-distribution ψ(k, ε), and aggregates K and L that satisfy
 - 1. k' and c are the optimal solutions to the worker's problem given prices.
 - 2. Prices are formed competitively from the firm's problem.
 - 3. Consistency between aggregate evolution and individual decision rules: ψ is the distribution implied by worker decision rules given the aggregate state.
 - 4. Aggregates are consistent with individual policy rules: $K = \int k d\psi$, $L = \int \epsilon d\psi$

Type Distribution

- The type distribution is a problem.
- Each policy function and transition depends on the type distribution.
- But the type distribution is time-varying in response to aggregate shocks.
- Alternative: use a smaller number of moments that can be calculated quickly to characterize the type distribution.
- Like a "sufficient statistic" for the type distribution.

Krusell and Smith (1998)

Specify moments from the type distribution γ that approximate the type distribution.

• Then:
$$\gamma' = \Gamma(\gamma, z, z')$$
.

- Household predicts prices using Γ instead of Ψ
- As long as this law of motion is reasonably accurate, this approximation will work.
- Krusell and Smith:
 - Pick first j moments of distribution over k, ϵ
 - i.e., mean, standard deviation,...
 - Use this as the law of motion.

• Use means: $ln(K') = \phi_0^z + \phi_1^z ln(K)$

Approximate problem

In a production economy, the agent's problem is given by

$$V(k,\epsilon;z,K) = u(c) + \beta E[V(k',\epsilon';z',K')]$$
(27)

s.t.
$$c + k' \le (1 + r(z, K, L) - \delta)k + w(z, K, L)\epsilon$$
 (28)
 $k' \ge k$ (29)

$$l' \ge \underline{k}$$
 (29)

$$z' = Markov P(z'|z)$$
 (30)

$$\epsilon \sim \operatorname{Markov} P(\epsilon'|\epsilon, z')$$
 (31)

(33)

$$ln(K') = \phi_0^z + \phi_1^z ln(K) \tag{32}$$

$$c\geq 0, k\geq 0, k_0$$
 given, z_0 given

- ▶ LLN \rightarrow N known given z.
- Now: need aggregate capital and ϕ_0^z , ϕ_1^z .

• Note:
$$\phi_0^z$$
, ϕ_1^z for each z

KS Solution Technique

- Algorithm:
 - 1. Specify an initial forecasting function for *K*: $ln(K') = \phi_0^z + \phi_1^z ln(K)$. Pick initial values for ϕ_0^z, ϕ_1^z
 - 2. Tell household that the evolution of the aggregate state is given by $ln(K') = \phi_0^z + \phi_1^z ln(K)$. i.e., replace the previous

constraint.

- 3. Use value function iteration on this problem to solve for optimal policy rules.
- 4. Simulate model forward to obtain *K*, *z* series. Drop first X number of observations.
- 5. Use OLS on K, z series to see if forecasting was correct $|[\phi_0^z, \phi_1^z]' \phi_0^{z'}, \phi_{1'}^z]| < errtol$
- 6. If not, update ϕ_0^z , ϕ_1^z between initial and estimates.
- Another way to think about this: You estimated the slope and intercept of K' on some series {K_j, z_j}^{j=t}_{j=1} and you are assessing its out of sample fit on {K_j, z_j}^T_{j=t+1}

KS Solution Technique

- Why does mean work?
- Linearity:

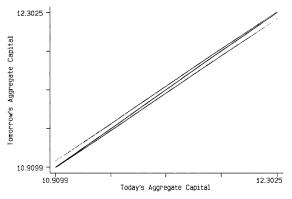


FIG. 1.-Tomorrow's vs. today's aggregate capital (benchmark model)

What do they find?

• With β heterogeneity, can hit wealth dist.

$T\Delta$	BI	F.	1
1.7	ъı	ن الد	

DISTRIBUTION OF WEALTH: MODELS AND DATA

	PE	ercentage of Wealth Held by Top				Fraction with	Gini
Model	1%	5%	10%	20%	30%	WEALTH < 0	
Benchmark model Stochastic-β model Data			19 73 64	35 88 79	46 92 88	0 11 11	.25 .82 .79

• What is heterogeneity in β a reduced-form for?

Business Cycle Effects

This model is built to handle stochastic shocks.

How do heterogeneous agents respond over a business cycle?

Model	$Mean(k_i)$	$\operatorname{Corr}(c_i, y_i)$	Standard Deviation (i_l)	$\operatorname{Corr}(y_{\scriptscriptstyle D} \ y_{\scriptscriptstyle t-4})$
Benchmark:				
Complete markets	11.54	.691	.031	.486
Incomplete markets	11.61	.701	.030	.481
$\sigma = 5$:				
Complete markets	11.55	.725	.034	.551
Incomplete markets	12.32	.741	.033	.524
Real business cycle:				
Complete markets	11.56	.639	.027	.342
Incomplete markets	11.58	.669	.027	.339
Stochastic-β:				
Incomplete markets	11.78	.825	.027	.459

TABLE 2 Aggregate Time Series

That was easy

Conclusion

- Today: solving heterogeneous agent models.
- Code to do this on the cluster.
- Start labor market frictions.