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Announcements

I Today: Basic two-period consumption-savings model.
I Use to understand what we are doing with macro models.
I Key: macro models are

I difference equations from a convex optimization problem
I that are resolved by a specified equilibrium concept.

I i.e., we specify a what we think the world looks like.
I Then we show how people would figure out that world.
I Then we show how those decisions aggregate.
I Will get you access to the cluster today.
I Homework due next Thursday.



Basic two-period model

I A (very) basic consumption-savings model:

max
c1,a2,c2

u(c1) + βu(c2) (1)

s.t. c1 + a2 = (1 + r)a1 + w1 (2)
c2 = (1 + r)a2 + w2 (3)

I What is this?:
I concave return function (sum of concave functions is concave)
I over convex set (budget constraint).

I Two (philosophical) ways to think about solving this problem:
1. We are solving a decision problem of an agent, then

aggregating to clear markets.
2. We are deriving a set of difference (cont. time =⇒

differential) equations and finding an equilibrium.
I Keep both in mind (will return to this later).



Euler Equation

I We solve this and get an Euler Equation:

u′(c1) = β(1 + r)u′(c2) (4)

I What does this say?
1. Agents will allocate their budget between two periods

according to this equation.
2. This expression tells us the growth path of consumption, given

c0.
I Euler equation: absolute, fundamental, key equation in every

(dynamic) macro model.
I Note: Euler equation need not be over consumption.
I Budget constraint tells us path of assets/consumption for a

given initial condition.



Euler Equation

I The Euler Equation tells us the evolution of consumption in
an economy.

I That is, it determines the dynamics.
I The effect of taxes, the presence of frictions or wedges,

adjustment costs, etc. can usually be distilled to the following:

u′(c1) = (1 +∆)β(1 + r)u′(c2) (5)

I where ∆ is a distortion in the economy, i.e. a friction that
prevents the market from realizing the perfectly competitive
equilibrium.

I These features change the marginal utility of consumption
over time, and thus distort the path of consumption.



Key Insight II: Portfolio Allocation

I Let’s return to the two-period model:

max
c1,a2,`,c2

u(c1, `) + βu(c2, 1) (6)

s.t. c1 + a2 = (1 + r)a1 + w1(1 − `) (7)
c2 = (1 + r)a2 (8)

I Now agents are optimizing over consumption and leisure.
I At first blush, this looks like it could become more difficult.



Portfolio Allocation
I When we solve this model, we get

u1(c1, `
∗) = β(1 + r)u1(c2, 0) (9)

I But also
∂V
∂`

= u2(c∗1 , `)− wλ = 0 (10)

u2(c∗1 , `) = wu1(c∗1 , `) (11)

I and

c1 + a2 = (1 + r)a1 + w1(1 − `) (12)

I Now we have an equation that determines dynamics (Euler
Equation) & one that gives corresponding change in assets.

I And a static equation that determines the allocation of
resources within a period (Portfolio Allocation).

I A lot of problems boil down to these two equations (possibly
more with additional static choices).



Models as Dynamic Systems

I Two (philosophical) ways one might think about solving this
problem:

1. We are solving a decision problem of an agent, then
aggregating to clear markets.

2. We are deriving a difference equation and finding an
equilibrium.

I Now, we’ll briefly discuss the second interpretation.



Neoclassical Growth Model

I The baseline model for most of modern macro (value function
representation):

V (kt) = max
ct

u(ct) + βV (kt+1) (13)

s.t. ct + kt+1 = kα
t + (1 − δ)kt (14)

I We have a recursive formulation &
I We have a dynamic equation for capital.
I What we will solve for:

I Euler Equation;
I Steady state capital and consumption.



Neoclassical Growth Model

Vt(kt) = max
ct

u(ct) + βVt+1(kt+1) (15)

s.t. ct + kt+1 = kα
t + (1 − δ)kt (16)

I Solving this:

∂Vt
∂ct

= −λ+ u′(ct) = 0 (17)

∂Vt
∂kt+1

= −λ+ β
∂Vt+1
∂kt+1

= 0 (18)

I Envelope condition:

∂Vt+1
∂kt+1

=
∂Vt
∂kt

= λ(αkα−1
t + (1 − δ)) (19)



Aside: The Envelope Condition
I Often misunderstood: (often) two components to it:
I i) derivative w/ optimality assumed & ii) the “envelope push”
I The derivative wrt kt is actually equal to:

∂Vt
∂kt

=
∂Vt
∂ct

∂ct
∂kt

+ β
∂Vt
∂kt+1

∂kt+1
∂kt

+ λ(αkα−1
t + (1 − δ))

(20)

I Remember our FOCS: ∂Vt
∂ct

= 0, ∂Vt
∂kt+1

= 0
I Envelope condition:

∂Vt
∂kt

=
�
�
�∂Vt

∂ct

∂ct
∂kt

+ β
�

�
��∂Vt

∂kt+1

∂kt+1
∂kt

+ λ(αkα−1
t + (1 − δ))

(21)

I The “envelope push” uses stationary of problem:
∂Vt+1
∂kt+1

=
∂Vt
∂kt

= λ(αkα−1
t + (1 − δ)) (22)



Neoclassical Growth Model

I FOCs:

∂Vt
∂ct

= −λ+ u′(ct) = 0 (23)

∂Vt
∂kt+1

= −λ+ β
∂Vt+1
∂kt+1

= 0 (24)

I Envelope condition:

∂Vt+1
∂kt+1

=
∂Vt
∂kt

= λ(αkα−1
t + (1 − δ)) (25)

I Putting these together gives us the Euler Equation:

u′(ct) = β(αkα−1
t + (1 − δ))u′(ct+1) (26)

I This & BC give us dynamics of neoclassical growth model.



Steady State

I What is a steady state and why do we care?
I It is challenging in general to characterize the solution to our

model:
I Even if we specify a utility function, it will have no closed

form solution unless δ = 1.
I But we can characterize the solution in the steady-state, i.e.,

where variables are constant over time:
I ct = ct+1 = c∗, kt = kt+1 = k∗.



Steady State

I But we can characterize the solution in the steady-state, i.e.,
where variables are constant over time:

I ct = ct+1 = c∗, kt = kt+1 = k∗.
I pick u(c) = ln(c). then

1
ct

= β(αkα−1
t + (1 − δ))

1
ct+1

(27)

I In steady state:

1
c∗ = β(αk∗α−1 + (1 − δ))

1
c∗ (28)

I Why would the Euler Equation in the steady-state only be a
function of capital?



Steady State
I This leaves us with capital:

1 = β(αk∗α−1 + (1 − δ)) (29)

k∗ = (
1
αβ

− (1 − δ)

α
)

1
α−1 (30)

k∗ = (
αβ

1 − β(1 − δ)
)

1
1−α (31)

I Now consumption from the budget constraint:

c∗ + k∗ = k∗α + (1 − δ)k∗ (32)
c∗ = k∗α − δk∗ (33)

c∗ = (
αβ

1 − β(1 − δ)
)

α
1−α − δ(

αβ

1 − β(1 − δ)
)

1
1−α (34)

I Why would consumption be determined by the budget
constraint, not the Euler Equation?



Dynamics

I Outside of steady-state we need to think about dynamics, i.e.,
how model evolves or fluctuates (in presence of shocks).

I Dynamics:

ct+1 = β(αkα−1
t + (1 − δ))ct (35)

kt+1 = kα
t + (1 − δ)kt − ct (36)

I We have two dynamic variables: c and k.
I The behavior of this system will depend on their dynamics.



Dynamics

I Dynamics:

ct+1 = β(αkα−1
t + (1 − δ))ct (37)

kt+1 = kα
t + (1 − δ)kt − ct (38)

I The behavior of this system will depend on their dynamics.
I At steady-state:

1 =
ct+1
ct

= β(αkα−1
t + (1 − δ)) (39)

1 =
kt+1
kt

= kα−1
t + (1 − δ)− ct

kt
(40)

I If both hold, we are in steady-state, if not, quantities can vary
dynamically.



Dynamics

I Dynamics:

ct+1 = β(αkα−1
t + (1 − δ))ct (41)

kt+1 = kα
t + (1 − δ)kt − ct (42)

I Small value of ct : second equation dictates that kt ↑.
I Small value of kt : first equation dictates that ct ↑.
I Reverse is true.



Phase Diagram
I Dynamics (figure from Eric Sim’s notes):

ct+1 = β(αkα−1
t + (1 − δ))ct (43)

kt+1 = kα
t + (1 − δ)kt − ct (44)



Phase Diagram

I Solving a model (mathematical intuition): determining rules
that put us on the saddle path (dashed line).

I Same concept for a decentralized economy.
I Seeing these models as dynamic systems expands our toolbox

for solving them.
I We will discuss this later.



Next Time

I Discuss important time series preliminaries.
I Be sure to start Matlab homework.
I See online for specific assignment.
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