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Introduction

» Today: start talking about time series/stochastic processes.

» Homework due in one week.

» New system for cluster access this year, still working on it.

» Probably have access today.



Stochastic Processes

» Random variables

» Conditional distributions

» Markov processes



Preliminaries

» X is a random variable, x is its realization

» Support: smallest set S such that Pr(x € S§) =1

» Cumulative distribution function: F (x) = Pr(X < x)

» Density function: f(x) = d%F(x) implying that
f (x) dx = dF (x)



The Expected Value

> Mean is the expectation

X:E(X):/OO xdF(x):/oo xf (x) dx

—00 —00

» The expectation of a function of a random variable, g (X), is

E(g(X) =/°O ¢ (X) dF (x)

—00

> Note that E (g (X)) # g (X) unless g (X) is linear, i.e.

g(X)=b-X



The Variance

» Variance

V(X) = E[(x - X)?]

» Standard deviation

N=

[V (X)]



Jointly Distributed Random Variables

» Random vector (X, Y)

» Joint distribution function: F(x,y) =Pr(X <x,Y <y)

> Covariance: C(X,Y)=E[(X=X) (Y -=Y)]

C(X,Y)

» Cross-correlation = i
[V(X)-V(Y)]2

» Expectation of a linear combination

E(aX + bY) = aE (X) + bE(Y)



What is a Stochastic Process?

» Stochastic process is an infinite sequence of random variables
{Xe} 2 oo

> j'th autocovariance = v; = C (X¢, X¢—))

» Strict stationarity: distribution of (X, Xetj,, Xetjps - Xetjir )
does not depend on t

» Covariance stationarity: X; and C (X¢, Xt—j) do not depend
ont



Defining a Conditional Density

» Work with random vector x = (X, Y) ~ F(x,y).

> X and Y are random variables
» x and y are realizations of the random variables
> F(x,y) is joint cumulative distribution

» f(x,y) is joint density function



Conditional Variables and Independence

» Conditional probability

> when Pr(x € B) >0,

Pr(AN B)

Pr(x € Alx € B) =Pr(A|B) = Pr(B)

» Conditional distribution F(y|x) (handles Pr(B) = 0)

» Marginal distribution: Fx (x) = Pr (X < x)

> F(y|x)is Pr(Y < y) conditional on X < x



Defining a Conditional Density

» Independence: The random variables X and Y are
independent if

F(x,y) = Fx(x) Fy (y)
» If X and Y are independent, then

F(ylx) = Fy(y)

and
F(xly) = Fx(x)
» i.i.d means independent and identically distributed

» Conditional (mathematical, rational) expectation

E(Y\x):/oo de(y\x)zf’o yF (] %) dy.

—00 —00



Markov Property

>

>

A particular conditional process is called a Markov chain.

Markov Property: A stochastic process {x;} is said to have
the Markov property if for all k > 1 and all t,

IDI’Ob(Xt+1|Xt,thl7 ...,Xt_k) = PrOb(Xt+]_‘Xt) (1)

That is, the dependence between random events can be
summarized exclusively with the previous event.

This allows us to characterize this process with a Markov
chain.

Markov chains are a key way of characterizing stochastic
events in our models.



Markov Chains

» For a stochastic process with the Markov property, we can
characterize the process with a Markov chain.

» A time-invariant Markov chain is defined by the tuple:
1. an n-dimensional state space of vectors e;,i =1, ..., n,

> where ¢; is an n x 1 vector where

» the ith entry equals 1 and the vector contains Os otherwise.

2. a transiton matrix P (n x n), which records the conditional
probability of transitioning between states

3. a vector m (n x 1), that records the unconditional probability
of being in state i at time 0.

» The key object here is P. Elements of this matrix are given by
Pjj = Prob(x¢+1 = ej|x¢ = €;) (2)

» In other words, if you're in state i, this is the probability you
enter state j.



Markov Chains

» Some assumptions on P and mg:
» Fori=1,...,n, P satisfies

_Zn:Pa'Zl (3)

> 7o satisfies

Zﬂ'o,‘zl (4)

» Where does this first property become useful?
» How would you calculate Prob(x¢i2 = ej|x; = €;)?
n

= Z Prob(xt42 = €j|xt+1 = en)Prob(xe41 = en|x: = €j)

h=1
(5)

= Z PinPrj = P (6)



Markov Chains

P This is also true in general:
Prob = eilx, = e) = pK) 7
ro (XH-k e_/‘Xt el) ij ( )

> Why is this useful? We can use mp with this transition matrix
to characterize the probability distribution over time:

m = moP (8)
5 = o P? (9)
(10)

» Thus, by knowing the initial distribution and the transition
matrix, P, we know the distribution at time t



Stationary Distributions

» Where does this trend to over time?

» We know that the transition of the distribution takes the form
Ty = TP,

» This distribution is stationary if

Tyl = Tt (11)
» (we will relax this to t large enough momentarily)
» This means that for a stationary distribution, 7, P satisfy

' =7'Por (12)
(I—P)yr=0 (13)

» Anyone recognize this?



Stationary Distributions

' =7'Por (14)
(I— P)r =0 (15)

» A lot of linearizing dynamic systems is about
» finding eigenvectors with corresponding eigenvalues of less
than 1 (non-explosive).
» solving for initial conditions that are orthogonal to the
explosive eigenvectors (i.e., the system does not explode).

» Intuitive refresher:

> eigenvector: tells me the direction a system moves (i.e.,
distance traveled)

> eigenvalue: tells me how many times it traveled since | last
saw it.



Stationary Distributions
n =7'Por (14)
(I-P)r=0 (15)

» It is useful to note (and will be useful when we think of
linearized solution techniques), that

> 7 is the (normalized) eigenvector of the stochastic matrix P.

» In this case, the eigenvalue (root) is 1.



Asymptotically Stationary Distributions

» What about when mg=m;:? Can it still have a notion of
stationarity?

P> Yes. Asymptotic stationarity.

> Asymptotic stationarity:

tILrgo Tt = Too (16)

where 7l = 7P
Next, is this ending point unique?
Does w4, depend on mg?

If not, m is an invariant or stationary distribution of P.

vV v.v. v Vv

This will be very useful when we talk about heterogeneous
agents.



Some Examples

> Let's pick a simple initial condition: 7 = [1 0 0].

» And a matrix

09 01 O
P=102 06 0.2
0.1 0.2 0.7

» Now use Matlab to iterate.

(17)



Preliminaries

>= piMat = MMat'*piMat
piMat =

0.9000
0. 1000
@

Figure: First iteration

> piMat = MMat~(108) '*piMat
piMat =
0.6154

0.2308
0.1538

Figure: First iteration

== plMat = MMat'*piMat
piMat =

0.8300
0.1500
0.0200

Figure: 2nd iteration

== piMat = MMat”(1000)' *piMat
piMat =
0.6154

0.2308
0.1538

Figure: Grid of k values

» This distribution (P) is asymptotically stationary!

» Unique? Try mj = [00 1]



Preliminaries

= plMat = MMat'*piMat
piMat =
0.2000

0.1000
o]

Figure: First iteration

»> piMat = MMat”(100) '*piMat
piMat =
0.56154

0.2308
9.1538

Figure: First iteration

== pilMat = MMat'*piMat
piMat =

0.8300
0.1500
0.0200

Figure: 2nd iteration

== piMat = MMat~(1000) ' *piMat
piMat =
0.6154

0.2308
0.1538

Figure: Grid of k values

» This distribution (P) is (probably) a unique invariant

distribution.

» How would we prove this?



Ergodicity

> We would like to be able to replace conditional expectations
with unconditional expectations.

> i.e., not indexed by time or initial conditions.

» Some preliminaries:

» Invariant function: “a random variable y; = y’x; is said to be
invariant if y; = yp, t > 0, for all realizations of x;,t > 0 that
occur with positive probability under (P, ).

> i.e., the state x can move around, but the outcome y; stays
constant at yp.



Ergodicity

» Ergodicity:

> ‘“Let (P, m) be a stationary Markov chain. The chain is said to
be ergodic if the only invariant functions y are constant with
probability 1 under the stationary unconditional probability
distribution 7."

» In other words, for any initial distribution, the only functions
that satisfy the definition of an invariant function are the

same.



Next Time

» More stochastic processes.

» Homework due in one week.
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